8 research outputs found

    Controlling differentiation of stem cells via bioactive disordered cues

    No full text
    Ideal bone tissue engineering is to induce bone regeneration through the synergistic integration of biomaterial scaffolds, bone progenitor cells, and bone-forming factors. Biomimetic scaffolds imitate the native extracellular matrix (ECM) and are often utilized in vitro as analogues of the natural ECM to facilitate investigations of cell–ECM interactions and processes. In vivo, the cellular microenvironment has a crucial impact on regulating cell behavior and functions. A PET surface was activated and then functionalized with mimetic peptides to promote human mesenchymal stem cell (hMSC) adhesion and differentiation into an osteogenic lineage. Spray technology was used to randomly micropattern peptides (RGD and BMP-2 mimetic peptides) on the PET surface. The distribution of the peptides grafted on the surface, the roughness of the surfaces and the chemistry of the surfaces in each step of the treatment were ascertained by atomic force microscopy, fluorescence microscopy, time-of-flight secondary ion mass spectrometry, Toluidine Blue O assay, and X-ray photoelectron spectroscopy. Subsequently, cell lineage differentiation was evaluated by quantifying the expression of immunofluorescence markers: osteoblast markers (Runx-2, OPN) and osteocyte markers (E11, DMP1, and SOST). In this article, we hypothesized that a unique combination of bioactive micro/nanopatterns on a polymer surface improves the rate of morphology change and enhances hMSC differentiation. In DMEM, after 14 days, disordered micropatterned surfaces with RGD and BMP-2 led to a higher osteoblast marker expression than surfaces with a homogeneous dual peptide conjugation. Finally, hMSCs cultured in osteogenic differentiation medium (ODM) showed accelerated cell differentiation. In ODM, our results highlighted the expression of osteocyte markers when hMSCs were seeded on PET surfaces with random micropatterns.Conception de surfaces bioinspirées avec des propriétés mécaniques et de bioactivité contrôlées pour la synthèse de plateforme in vitro de culture cellulair

    Practical and scalable synthesis of sulfonated graphene

    No full text
    SSCI-VIDE+CDFA+YLI:FRAInternational audienc

    Rapid Hydrothermal Synthesis of VO2 (B) and Its Conversion to Thermochromic VO2 (M1)

    No full text
    The present study provides a rapid way to obtain VO2 (B) under economical and environmentally friendly conditions. VO2 (B) is one of the well-known polymorphs of vanadium dioxide and is a promising cathode material for aqueous lithium ion batteries. VO2 (B) was successfully synthesized by rapid single-step hydrothermal process using V2O5 and citric acid as precursors. The present study shows that phase-pure VO2 (B) polytype can be easily obtained at 180 °C for 2 h and 220 °C for 1 h, that is, the lowest combination of temperature and duration reported so far. The obtained VO2 (B) is characterized by X-ray powder diffraction, high-resolution scanning electron microscopy, and Fourier transform infrared spectroscopy. In addition, we present an indirect way to obtain VO2 (M1) by annealing VO2 (B) under vacuum for 1 h

    Nitrogen Radiofrequency Plasma Treatment of Graphene

    Get PDF
    The incorporation of nitrogen (N) atoms into a graphitic network such as graphene (Gr) remains a major challenge. However, even if the insertion mechanisms are not yet fully understood, it is certain that the modification of the electrical properties of Gr is possible according to the configuration adopted. Several simulations work, notably using DFT, have shown that the incorporation of N in Gr can induce an increase in the electrical conductivity and N acts as an electron donor; this increase is linked to the amount of N, the sp2/sp3 carbon configuration, and the nature of C-N bonding. Nitrogen radiofrequency (RF) plasma has been used to incorporate N into Gr materials. The RF plasma method shows the possibility to incorporate N-graphitic nitrogen into Gr after a pre-treatment with nitric acid. X-ray photoelectron spectroscopy and Raman spectrometry were used to quantify the functionalized groups. The modifications of the graphene surface chemistry along the amount of N inside the Gr change the chemical environment of N. This method, enabling the incorporation of N inside Gr matrix, opens up a route to a broad range of applications

    Straightforward prediction of the Ni1-xO layers stoichiometry by using optical and electrochemical measurements

    No full text
    In this study, we propose a straightforward method for x determination in sub-stoichiometric nickel oxide (Ni1−x O) films prepared by ultrasonic spray pyrolysis on fluor-tin oxide (FTO) substrates by varying the post-deposition thermal treatment. The Ni3+ concentration, the flat band potential (Φfb) and the open circuit potential (V oc) were determined by electrochemical impedance analysis in aqueous media and correlated to the transmission of Ni1−x O films. An x-ray photoelectron spectroscopy study was also performed to quantify the amount of Ni3+ in the films and compare it with the one determined by electrochemical analysis. The electrochromic behavior of the Ni1−x O films in non-aqueous electrolyte was investigated as well.With increasing Ni3+ concentration the films became more brownish and more conductive, both V oc and Φfb values increased. Calibration curves of transmission at 550 nm or open circuit potential versus carrier concentration were plotted and allowed the prediction of x in an unknown Ni1−x O sample. The Ni1−x O films characterized by the highest Ni3+ concentration have a darker colored state but lower transmission modulation, due to their reduced specific surface and increased crystallinity

    Strain dependent microstructural modifications of BiCrO3 epitaxial thin films

    Get PDF
    Strain-dependent microstructural modifications were observed in epitaxial BiCrO3 (BCO) thin films fabricated on single crystalline substrates, utilizing pulsed laser deposition. The following conditions were employed to modify the epitaxial-strain: (i) in-plane tensile strain, BCOSTO [BCO grown on buffered SrTiO3 (001)] and in-plane compressive strain, BCONGO [BCO grown on buffered NdGaO3 (110)] and (ii) varying BCO film thickness. A combination of techniques like X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (TEM) was used to analyse the epitaxial growth quality and the microstructure of BCO. Our studies revealed that in the case of BCOSTO, a coherent interface with homogeneous orthorhombic phase is obtained only for BCO film with thicknesses, d and 1/4 satellite reflections, the latter oriented at 45° from orthorhombic diffraction spots. High angle annular dark field scanning TEM of these films strongly suggested that the satellite reflections, 1/2 and 1/4 , originate from the atomic stacking sequence changes (or "modulated structure") as reported for polytypes, without altering the chemical composition. The unaltered stoichiometry was confirmed by estimating both valency of Bi and Cr cations by surface and in-depth XPS analysis as well as the stoichiometric ratio (1 Bi:1 Cr) using scanning TEM-energy dispersive X-ray analysis. In contrast, compressively strained BCONGO films exhibited monoclinic symmetry without any structural modulations or interfacial defects, up to d ~ 200 nm. Our results indicate that both the substrate-induced in-plane epitaxial strain and the BCO film thickness are the crucial parameters to stabilise a homogeneous BCO phase in an epitaxially grown film

    Oxidation induced superconductivity and Mo/Cu charge equilibrium in Mo0.3Cu0.7Sr2ErCu2Oy

    No full text
    A detailed study of the structure-composition-properties correlation is reported for the as-prepared (AP) and two oxygenated (oxygenation carried out at ambient pressure and under high pressure) Mo0.3Cu0.7Sr2ErCu2Oy samples. Their crystal structures were characterized by combining the x-ray/neutron powder diffraction (NPD) and electron diffraction techniques. All the samples show tetragonal symmetry, crystallizing in the P4/mmm space group. The influence of oxygenation in the electronic states for the Mo0.3Cu0.7Sr2ErCu2Oy system associated with an oxidation reaction leading from a non-superconducting to a superconducting state has also been investigated by means of x-ray photoelectron spectroscopy (XPS). XPS measurements show the predominance of the MoV oxidation state over the MoVI one in the AP sample; annealing under flowing oxygen enhances both the MoVI and CuII amounts. The AP sample shows the existence of ferromagnetic clusters originated from the short-range magnetic correlations of the paramagnetic MoV cations. On the other hand, all the oxygenated samples are not magnetic but superconducting. The high-pressure oxygenated sample shows the highest superconducting transition temperature of TC = 84 K. A partial oxygen ordering in the (Mo/Cu)O1+δ chain and a decrease in the charge transfer energy after oxygenation induces superconductivity in the oxygenated samples

    Dual lithium insertion and conversion mechanisms in a titanium-based mixed-anion nanocomposite

    No full text
    The electrochemical reaction of lithium with a vacancy-containing titanium hydroxyfluoride was studied. On the basis of pair distribution function analysis, NMR, and X-ray photoelectron spectroscopy, we propose that the material undergoes partitioning upon initial discharge to form a nanostructured composite containing crystalline Li(x)TiO(2), surrounded by a Ti(0) and LiF layer. The Ti(0) is reoxidized upon reversible charging to an amorphous TiF(3) phase via a conversion reaction. The crystalline Li(x)TiO(2) is involved in an insertion reaction. The resulting composite electrode, Ti(0)-LiF/Li(x)TiO(2) ⇔ TiF(3)/ Li(y)TiO(2), allows reaction of more than one Li per Ti, providing a route to higher capacities while improving the energy efficiency compared to pure conversion chemistries
    corecore