1,344 research outputs found

    Novel Quenched Disorder Fixed Point in a Two-Temperature Lattice Gas

    Full text link
    We investigate the effects of quenched randomness on the universal properties of a two-temperature lattice gas. The disorder modifies the dynamical transition rates of the system in an anisotropic fashion, giving rise to a new fixed point. We determine the associated scaling form of the structure factor, quoting critical exponents to two-loop order in an expansion around the upper critical dimension dc=7_c=7. The close relationship with another quenched disorder fixed point, discovered recently in this model, is discussed.Comment: 11 pages, no figures, RevTe

    Stability of a Nonequilibrium Interface in a Driven Phase Segregating System

    Full text link
    We investigate the dynamics of a nonequilibrium interface between coexisting phases in a system described by a Cahn-Hilliard equation with an additional driving term. By means of a matched asymptotic expansion we derive equations for the interface motion. A linear stability analysis of these equations results in a condition for the stability of a flat interface. We find that the stability properties of a flat interface depend on the structure of the driving term in the original equation.Comment: 14 pages Latex, 1 postscript-figur

    Learning masculinities in a Japanese high school rugby club

    Get PDF
    This paper draws on research conducted on a Tokyo high school rugby club to explore diversity in the masculinities formed through membership in the club. Based on the premise that particular forms of masculinity are expressed and learnt through ways of playing (game style) and the attendant regimes of training, it examines the expression and learning of masculinities at three analytic levels. It identifies a hegemonic, culture-specific form of masculinity operating in Japanese high school rugby, a class-influenced variation of it at the institutional level of the school and, by further tightening its analytic focus, further variation at an individual level. In doing so this paper highlights the ways in which diversity in the masculinities constructed through contact sports can be obfuscated by a reductionist view of there being only one, universal hegemonic patterns of masculinity

    Top-down control is not lost in the attentional blink: evidence from intact endogenous cuing.

    Get PDF
    The attentional blink (AB) refers to the finding that performance on the second of two targets (T1 and T2) is impaired when the targets are presented at a target onset asynchrony (TOA) of less than 500 ms. One account of the AB assumes that the processing load of T1 leads to a loss of top-down control over stimulus selection. The present study tested this account by examining whether an endogenous spatial cue that indicates the location of a following T2 can facilitate T2 report even when the cue and T2 occur within the time window of the AB. Results from three experiments showed that endogenous cuing had a significant effect on T2 report, both during and outside of the AB; this cuing effect was modulated by both the cue-target onset asynchrony and by cue validity, while it was invariant to the AB. These results suggest that top-down control over target selection is not lost during the AB. © 2007 Springer-Verlag

    Review of the k-Body Embedded Ensembles of Gaussian Random Matrices

    Full text link
    The embedded ensembles were introduced by Mon and French as physically more plausible stochastic models of many--body systems governed by one--and two--body interactions than provided by standard random--matrix theory. We review several approaches aimed at determining the spectral density, the spectral fluctuation properties, and the ergodic properties of these ensembles: moments methods, numerical simulations, the replica trick, the eigenvector decomposition of the matrix of second moments and supersymmetry, the binary correlation approximation, and the study of correlations between matrix elements.Comment: Final version. 29 pages, 4 ps figures, uses iopart.st

    Role of the Subunits Interactions in the Conformational Transitions in Adult Human Hemoglobin: an Explicit Solvent Molecular Dynamics Study

    Full text link
    Hemoglobin exhibits allosteric structural changes upon ligand binding due to the dynamic interactions between the ligand binding sites, the amino acids residues and some other solutes present under physiological conditions. In the present study, the dynamical and quaternary structural changes occurring in two unligated (deoxy-) T structures, and two fully ligated (oxy-) R, R2 structures of adult human hemoglobin were investigated with molecular dynamics. It is shown that, in the sub-microsecond time scale, there is no marked difference in the global dynamics of the amino acids residues in both the oxy- and the deoxy- forms of the individual structures. In addition, the R, R2 are relatively stable and do not present quaternary conformational changes within the time scale of our simulations while the T structure is dynamically more flexible and exhibited the T\rightarrow R quaternary conformational transition, which is propagated by the relative rotation of the residues at the {\alpha}1{\beta}2 and {\alpha}2{\beta}1 interface.Comment: Reprinted (adapted) with permission from J. Phys. Chem. B DOI:10.1021/jp3022908. Copyright (2012) American Chemical Societ

    Testing a dynamic field account of interactions between spatial attention and spatial working memory

    Get PDF
    Studies examining the relationship between spatial attention and spatial working memory (SWM) have shown that discrimination responses are faster for targets appearing at locations that are being maintained in SWM, and that location memory is impaired when attention is withdrawn during the delay. These observations support the proposal that sustained attention is required for successful retention in SWM: if attention is withdrawn, memory representations are likely to fail, increasing errors. In the present study, this proposal is reexamined in light of a neural process model of SWM. On the basis of the model’s functioning, we propose an alternative explanation for the observed decline in SWM performance when a secondary task is performed during retention: SWM representations drift systematically toward the location of targets appearing during the delay. To test this explanation, participants completed a color-discrimination task during the delay interval of a spatial recall task. In the critical shifting attention condition, the color stimulus could appear either toward or away from the memorized location relative to a midline reference axis. We hypothesized that if shifting attention during the delay leads to the failure of SWM representations, there should be an increase in the variance of recall errors but no change in directional error, regardless of the direction of the shift. Conversely, if shifting attention induces drift of SWM representations—as predicted by the model—there should be systematic changes in the pattern of spatial recall errors depending on the direction of the shift. Results were consistent with the latter possibility—recall errors were biased toward the location of discrimination targets appearing during the delay

    Temporal Dynamics of Visual Attention Allocation

    Get PDF
    We often temporally prepare our attention for an upcoming event such as a starter pistol. In such cases, our attention should be properly allocated around the expected moment of the event to process relevant sensory input efficiently. In this study, we examined the dynamic changes of attention levels near the expected moment by measuring contrast sensitivity to a target that was temporally cued by a five-second countdown. We found that the overall attention level decreased rapidly after the expected moment, while it stayed relatively constant before it. Results were not consistent with the predictions of existing explanations of temporal attention such as the hazard rate or the stimulus-driven oscillations. A control experiment ruled out the possibility that the observed pattern was due to biased time perception. In a further experiment with a wider range of cue-stimulus-intervals, we observed that attention level increased until the last 500 ms of the interval range, and thereafter, started to decrease. Based on the performances of a generative computational model, we suggest that our results reflect the nature of temporal attention that takes into account the subjectively estimated hazard rate and the probability of relevant events occurring in the near future
    corecore