25 research outputs found

    Variability in Avian Eggshell Colour: A Comparative Study of Museum Eggshells

    Get PDF
    Background: The exceptional diversity of coloration found in avian eggshells has long fascinated biologists and inspired a broad range of adaptive hypotheses to explain its evolution. Three main impediments to understanding the variability of eggshell appearance are: (1) the reliable quantification of the variation in eggshell colours; (2) its perception by birds themselves, and (3) its relation to avian phylogeny. Here we use an extensive museum collection to address these problems directly, and to test how diversity in eggshell coloration is distributed among different phylogenetic levels of the class Aves. Methodology and Results: Spectrophotometric data on eggshell coloration were collected from a taxonomically representative sample of 251 bird species to determine the change in reflectance across different wavelengths and the taxonomic level where the variation resides. As many hypotheses for the evolution of eggshell coloration assume that egg colours provide a communication signal for an avian receiver, we also modelled reflectance spectra of shell coloration for the avian visual system. We found that a majority of species have eggs with similar background colour (long wavelengths) but that striking differences are just as likely to occur between congeners as between members of different families. The region of greatest variability in eggshell colour among closely related species coincided with the medium-wavelength sensitive region around 500 nm. Conclusions: The majority of bird species share similar background eggshell colours, while the greatest variability among species aligns with differences along a red-brown to blue axis that most likely corresponds with variation in the presence and concentration of two tetrapyrrole pigments responsible for eggshell coloration. Additionally, our results confirm previous findings of temporal changes in museum collections, and this will be of particular concern for studies testing intraspecific hypotheses relating temporal patterns to adaptation of eggshell colour. We suggest that future studies investigating the phylogenetic association between the composition and concentration of eggshell pigments, and between the evolutionary drivers and functional impacts of eggshell colour variability will be most rewarding.Phillip Cassey, Steven J. Portugal, Golo Maurer, John G. Ewen, Rebecca L. Boulton, Mark E. Hauber and Tim M. Blackbur

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS

    Systematic study of 1,2,3-triazolyl sterols for the development of new drugs against parasitic Neglected Tropical Diseases

    No full text
    A series of thirty 1,2,3-triazolylsterols, inspired by azasterols with proven antiparasitic activity, were prepared by a stereocontrolled synthesis. Ten of these compounds constitute chimeras/hybrids of 22,26-azasterol (AZA) and 1,2,3-triazolyl azasterols. The entire library was assayed against the kinetoplastid parasites Leishmania donovani, Trypanosoma cruzi, and Trypanosoma brucei, the causatives agents for visceral leishmaniasis, Chagas disease, and sleeping sickness, respectively. Most of the compounds were active at submicromolar/nanomolar concentrations with high selectivity index, when compared to their cytotoxicity against mammalian cells. Analysis of in silico physicochemical properties were conducted to rationalize the activities against the neglected tropical disease pathogens. The analogs with selective activity against L. donovani (E4, IC50 0.78 ÎŒM), T brucei (E1, IC50 0.12 ÎŒM) and T. cruzi (B1– IC50 0.33 ÎŒM), and the analogs with broad-spectrum antiparasitic activities against the three kinetoplastid parasites (B1 and B3), may be promising leads for further development as selective or broad-spectrum antiparasitic drugs

    The non-emergency patient transport modelled as a team orienteering problem

    No full text
    This work presents an improved model to solve the non-emergency patients transport (NEPT) service issues given the new rules recently established in Portugal. The model follows the same principle of the Team Orienteering Problem by selecting the patients to be included in the routes attending the maximum reduction in costs when compared with individual transportation. This model establishes the best sets of patients to be transported together. The model was implemented in AMPL and a compact formulation was solved using NEOS Server. A heuristic procedure based on iteratively solving Orienteering Problems is presented, and this heuristic provides good results in terms of accuracy and computation time. Euclidean instances as well as asymmetric real data gathered from Google maps were used, and the model has a promising performance mainly with asymmetric cost matrices.Project GATOP - Genetic Algorithms for Team Orienteering Problem (Ref PTDC/EME-GIN/120761/2010), financed by national funds by FCT / MCTES, and co-funded by the European Social Development Fund (FEDER) through the COMPETE - Programa Operacional Fatores de Competitividade (POFC) Ref FCOMP-01-0124-FEDER-020609. This work has been par tially supported by FCT – Fundação para a CiĂȘncia e Tecnologia within the Project Scope: UID/CEC/00319/201

    Site-Selective Enzymatic Labeling of Designed Ankyrin Repeat Proteins Using Protein Farnesyltransferase.

    Full text link
    Affinity agents coupled to a functional moiety play an ever-increasing role in modern medicine, ranging from radiolabeled selective binders in diagnosis to antibody-drug conjugates in targeted therapies. In biomedical research, protein coupling to fluorophores, surfaces and nanoparticles has become an integral part of many procedures. In addition to antibodies, small scaffold proteins with similar target binding properties are being widely explored as alternative targeting moieties. To label these binders of interest with different functional moieties, conventional chemical coupling methods can be employed, but often result in heterogeneously modified protein products. In contrast, enzymatic labeling methods are highly site-specific and efficient. Protein farnesyltransferase (PFTase) catalyzes the transfer of an isoprenoid moiety from farnesyl diphosphate (FPP) to a cysteine residue in a C-terminal CaaX motif at the C-terminus of a protein substrate. The addition of only four amino acid residues minimizes the influence on the native protein structure. In addition, a variety of isoprenoid analogs containing different bioorthogonal functional groups, including azides, alkynes, and aldehydes, have been developed to enable conjugation to various cargos after being incorporated onto the target protein by PFTase. In this protocol, we present a detailed procedure for labeling Designed Ankyrin Repeat Proteins (DARPins) engineered with a C-terminal CVIA sequence using an azide-containing FPP analog by yeast PFTase (yPFTase). In addition, procedures to subsequently conjugate the labeled DARPins to a TAMRA fluorophore using strained-promoted alkyne-azide cycloaddition (SPAAC) reactions as well as the sample preparation to evaluate the target binding ability of the conjugates by flow cytometry are described
    corecore