42 research outputs found

    Food-induced brain responses and eating behaviour

    Get PDF
    The brain governs food intake behaviour by integrating many different internal and external state and trait-related signals. Understanding how the decisions to start and to stop eating are made is crucial to our understanding of (maladaptive patterns of) eating behaviour. Here, we aim to (1) review the current state of the field of 'nutritional neuroscience' with a focus on the interplay between food-induced brain responses and eating behaviour and (2) highlight research needs and techniques that could be used to address these. The brain responses associated with sensory stimulation (sight, olfaction and taste), gastric distension, gut hormone administration and food consumption are the subject of increasing investigation. Nevertheless, only few studies have examined relations between brain responses and eating behaviour. However, the neural circuits underlying eating behaviour are to a large extent generic, including reward, self-control, learning and decision-making circuitry. These limbic and prefrontal circuits interact with the hypothalamus, a key homeostatic area. Target areas for further elucidating the regulation of food intake are: (eating) habit and food preference formation and modification, the neural correlates of self-control, nutrient sensing and dietary learning, and the regulation of body adiposity. Moreover, to foster significant progress, data from multiple studies need to be integrated. This requires standardisation of (neuroimaging) measures, data sharing and the application and development of existing advanced analysis and modelling techniques to nutritional neuroscience data. In the next 20 years, nutritional neuroscience will have to prove its potential for providing insights that can be used to tackle detrimental eating behaviour

    Can we have a second helping? A preregistered direct replication study on the neurobiological mechanisms underlying self-control

    Get PDF
    Self-control is of vital importance for human wellbeing. Hare et al. (2009) were among the first to provide empirical evidence on the neural correlates of self-control. This seminal study profoundly impacted theory and empirical work across multiple fields. To solidify the empirical evidence supporting self-control theory, we conducted a preregistered replication of this work. Further, we tested the robustness of the findings across analytic strategies. Participants underwent functional magnetic resonance imaging while rating 50 food items on healthiness and tastiness and making choices about food consumption. We closely replicated the original analysis pipeline and supplemented it with additional exploratory analyses to follow-up on unexpected findings and to test the sensitivity of results to key analytical choices. Our replication data provide support for the notion that decisions are associated with a value signal in ventromedial prefrontal cortex (vmPFC), which integrates relevant choice attributes to inform a final decision. We found that vmPFC activity was correlated with goal values regardless of the amount of self-control and it correlated with both taste and health in self-controllers but only taste in non-self-controllers. We did not find strong support for the hypothesized role of left dorsolateral prefrontal cortex (dlPFC) in self-control. The absence of statistically significant group differences in dlPFC activity during successful self-control in our sample contrasts with the notion that dlPFC involvement is required in order to effectively integrate longer-term goals into subjective value judgments. Exploratory analyses highlight the sensitivity of results (in terms of effect size) to the analytical strategy, for instance, concerning the approach to region-of-interest analysis

    Appearance Matters: Neural Correlates of Food Choice and Packaging Aesthetics

    Get PDF
    Neuro-imaging holds great potential for predicting choice behavior from brain responses. In this study we used both traditional mass-univariate and state-of-the-art multivariate pattern analysis to establish which brain regions respond to preferred packages and to what extent neural activation patterns can predict realistic low-involvement consumer choices. More specifically, this was assessed in the context of package-induced binary food choices. Mass-univariate analyses showed that several regions, among which the bilateral striatum, were more strongly activated in response to preferred food packages. Food choices could be predicted with an accuracy of up to 61.2% by activation patterns in brain regions previously found to be involved in healthy food choices (superior frontal gyrus) and visual processing (middle occipital gyrus). In conclusion, this study shows that mass-univariate analysis can detect small package-induced differences in product preference and that MVPA can successfully predict realistic low-involvement consumer choices from functional MRI data

    Quantitative models for reverse logistics

    Get PDF
    This article surveys the recently emerged field of reverse logistics. The management of return flows induced by the various forms of reuse of products and materials in industrial production processes has received growing attentio

    Can we have a second helping?: A preregistered direct replication study on the neurobiological mechanisms underlying self-control

    Get PDF
    Self-control is of vital importance for human wellbeing. Hare et al. (2009) were among the first to provide empirical evidence on the neural correlates of self-control. This seminal study profoundly impacted theory and empirical work across multiple fields. To solidify the empirical evidence supporting self-control theory, we conducted a preregistered replication of this work. Further, we tested the robustness of the findings across analytic strategies. Participants underwent functional magnetic resonance imaging while rating 50 food items on healthiness and tastiness and making choices about food consumption. We closely replicated the original analysis pipeline and supplemented it with additional exploratory analyses to follow-up on unexpected findings and to test the sensitivity of results to key analytical choices. Our replication data provide support for the notion that decisions are associated with a value signal in ventromedial prefrontal cortex (vmPFC), which integrates relevant choice attributes to inform a final decision. We found that vmPFC activity was correlated with goal values regardless of the amount of self-control and it correlated with both taste and health in self-controllers but only taste in non-self-controllers. We did not find strong support for the hypothesized role of left dorsolateral prefrontal cortex (dlPFC) in self-control. The absence of statistically significant group differences in dlPFC activity during successful self-control in our sample contrasts with the notion that dlPFC involvement is required in order to effectively integrate longer-term goals into subjective value judgments. Exploratory analyses highlight the sensitivity of results (in terms of effect size) to the analytical strategy, for instance, concerning the approach to region-of-interest analysis
    corecore