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The brain governs food intake behaviour by integrating many different internal and external
state and trait-related signals. Understanding how the decisions to start and to stop eating are
made is crucial to our understanding of (maladaptive patterns of) eating behaviour. Here, we
aim to (1) review the current state of the field of ‘nutritional neuroscience’ with a focus on the
interplay between food-induced brain responses and eating behaviour and (2) highlight research
needs and techniques that could be used to address these. The brain responses associated with
sensory stimulation (sight, olfaction and taste), gastric distension, gut hormone administration
and food consumption are the subject of increasing investigation. Nevertheless, only few
studies have examined relations between brain responses and eating behaviour. However, the
neural circuits underlying eating behaviour are to a large extent generic, including reward, self-
control, learning and decision-making circuitry. These limbic and prefrontal circuits interact
with the hypothalamus, a key homeostatic area. Target areas for further elucidating the
regulation of food intake are: (eating) habit and food preference formation and modification,
the neural correlates of self-control, nutrient sensing and dietary learning, and the regulation of
body adiposity. Moreover, to foster significant progress, data from multiple studies need to be
integrated. This requires standardisation of (neuroimaging) measures, data sharing and the
application and development of existing advanced analysis and modelling techniques to nutri-
tional neuroscience data. In the next 20 years, nutritional neuroscience will have to prove its
potential for providing insights that can be used to tackle detrimental eating behaviour.

Functional MRI: Eating behaviour: Peptide hormones: Personality characteristics

Food is required for survival and therefore is a primary
reward. Abundance of food has become a greater problem
than food shortage: the number of overweight and obese
people exceeds that of those suffering from under-
nutrition(1). Obesity is driven by rapid changes in our food
environment(2,3) which promote overeating. Such eating
behaviour is maladaptive in the longer term. This review
addresses the interactions between foods, the gut and the
brain, which give rise to eating behaviour (Fig. 1). With
‘eating behaviour’ we refer to food choice, meal frequency

and meal size (where a ‘meal’ includes eating occasions
such as eating a snack food or drinking something ener-
getic). Eating behaviour is determined by eating decisions,
namely what to eat, when to start and when to stop eating.
These decisions are taken in the brain, which integrates a
multitude of neural and hormonal signals reflecting internal
state and the environment. They determine diet nutrient
composition, eating frequency and portion size, i.e., a
person’s diet. Understanding how eating decisions come
about is crucial for understanding maladaptive patterns of
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eating behaviour and improvement of their prevention and
remediation. Note that eating decisions are usually not
made (entirely) consciously, nor are they necessarily the
result of ‘free will’ (see(4)).
Relatively recently, neuroimaging techniques such as

positron-emission tomography and MRI have enabled
studying the brain in vivo. The beauty of MRI is its ver-
satility: many different types of measurements can be
obtained with the same machine. In brain research, the
most commonly used types of MRI scans are: anatomical
scans, showing e.g. grey and white matter; functional (f)
MRI scans, either obtained during a task such as looking at
food images or during ‘rest’ (resting state fMRI, see(5)), or
perfusion scans, which use arterial spin labelling techni-
ques to obtain a semi-quantitative measure of cerebral
blood flow; and diffusion-tensor imaging scans, which
yield images of the white matter tracts. The most widely
used fMRI technique is blood-oxygen level dependent
fMRI(6). This form of fMRI exploits the fact that at a site
of increased neuronal firing (brain activation), increased
local blood flow leads to a decreased concentration of
deoxygenated Hb. This in turn attenuates the local distor-
tion of the magnetic field by deoxygenated Hb, which is
paramagnetic, and leads to a small increase in the fMRI
signal (about 0.5–4%). Only a small percentage of all
fMRI studies involve food-induced brain responses; how-
ever, a great deal of neuroscientific work has addressed
brain systems intimately involved in, or relevant for, eating
behaviour. This includes the neurophysiology and func-
tional neuroanatomy of e.g. sensory perception, reward,
emotion and decision-making.
Neuroimaging techniques can be used to measure

(changes in) brain state (anatomy, resting state) as well as
food cue-induced brain responses. These brain character-
istics are affected by multiple trait as well as state factors,
such as sex, age and BMI, which in turn modulate eating

behaviour (Fig. 1). Understanding how eating behaviour
is produced requires the integration of neuroimaging
data with physiological, psychological and behavioural
measures. In particular, linking brain measures to eating
behaviour is necessary to be able to interpret neuroimaging
findings and assess their real life relevance. Later, we will
review the human neuroimaging literature on the interac-
tions between food, gut, brain and eating behaviour and
highlight research needs and techniques that could be used
to foster progress.

Food–brain interaction

All senses are involved in the perception of foods and the
regulation of food intake. Food perception induces innate
and learned autonomic anticipatory physiological respon-
ses, which are referred to as cephalic phase responses (for
reviews see(7,8)). In addition to cephalic phase responses,
the sensory perception of a food before and during con-
sumption induces numerous brain responses governing
food choice and food intake behaviour. Eventually, this
results in meal termination and possibly satiety. Of course,
once ingestion has started, gastrointestinal neural and hor-
monal signals also start to contribute. Summaries and
detail on the basic processing of food stimuli in the brain
can be found in several reviews and meta-analyses ad-
dressing visual food stimuli (food images)(9), odour(10),
taste(11,12) and flavour (taste, odour and somatosensory
stimulation)(13,14).

A well-known phenomenon driven by cephalic stimula-
tion is sensory-specific satiety(15). Sensory-specific satiety
has been demonstrated in the human orbitofrontal cortex
for ad libitum consumption(16,17). However, further inves-
tigation is needed in order to disentangle liking and want-
ing effects (see e.g.(18)), and assess correlations with eating

Fig. 1. Schematic representation of food–gut–brain interactions in relation to eating behaviour

together with modulators of brain structure and function. Note that both brain state and

brain responses can be affected by trait as well as state factors. Sensory charact., Sensory

characteristics.
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behaviour (rather than subjective ratings) when there is no
ad libitum consumption. Under such conditions it has
proven hard to observe sensory-specific satiety effects in
the brain(19).
fMRI studies have shown that anticipation of consump-

tion (food reward) and subsequent consumption (reward
receipt) recruit partially different brain areas(20–23). The
distinction between reward anticipation and reward receipt
processing in the brain is particularly relevant for a deeper
understanding of aberrant responses to food cues since
these could be driven by abnormalities in either one of
these processes. For example, neuroimaging studies have
shown not only diminished striatal responsivity to reward
receipt in obese subjects(24,25) but also hyper-responsivity
to both anticipation and consumption of palatable food in
somatosensory, gustatory and reward valuation regions(26).
Interestingly, a recent study found that the association
between brain reward responsivity to imagined consump-
tion and weight gain is modulated by genotype(27).
There can be strong cognitive effects, so-called top-

down effects, on food perception and eating behaviour, and
this is also studied with functional neuroimaging. A grow-
ing number of studies has addressed effects of (selective)
attention to specific product characteristics, such as taste
and healthiness(28,29). Other studies involve neuroimaging
of the effects of product appearance or product labels(26,30).
These topics are addressed further under section ‘Cognitive
effects’.

Gut–brain interaction

The brain receives input from the viscera, including the
gastrointestinal tract, and adipose tissue by way of multiple
neural and hormonal signals. Most neural information is
transmitted by the afferent part of the vagus nerve, which
projects to the brain stem where vagal input from each
visceral organ is directed to particular subnuclei of the
nucleus of the solitary tract as well as integrated with input
from other brain regions which regulate autonomic func-
tions and homoeostasis(31,32). In addition, many gut pep-
tides and other hormones such as leptin act on vagal
afferents, brainstem nuclei and higher brain regions, in
particular the hypothalamus, exerting both acute and long-
term effects on the regulation of food intake and body
weight(33,34). Later, work on the relations between stomach
distension and hormones and the human brain is reviewed
(for detailed reviews of the latter, see(35,36)).

Stomach distension

An important determinant of meal termination and satiety
is stomach distension by the volume (and weight) of
food(37,38). To date, surprisingly little studies have investi-
gated the neural correlates of non-painful stomach disten-
sion. In neuroimaging studies in which the stomach was
distended with a gastric balloon, activation was observed
in the brainstem, insula, amygdala, posterior insula, left
inferior frontal gyrus and anterior cingulate cortex(39,40).
Moreover, the response in the left amygdala and insula cor-
related negatively with changes in fullness and positively

with changes in plasma ghrelin(40). In addition, Wang
et al.(40) found that subjects with a higher BMI had a
diminished responsivity to stomach distension in the right
amygdala and insula. They interpret this as a greater insen-
sitivity to stomach fullness. However, it is hard to rule out
differences in stomach volume, which would affect the
degree of stretch induced in the stomach wall. Also, a
recent animal study has suggested that effects of food-like
stomach distension on brain activity may in part be attri-
butable to concomitant transient increases in blood pres-
sure(41). Future studies should ideally combine fMRI
measures of brain activation with MRI measures of gastric
volume and data on gastric pressure and stomach empty-
ing, in the case of gastric loads (see e.g.(42)).

Hormones

For studying hormone–brain interaction, there are several
options that are only beginning to be explored. The first is
to assess which brain areas respond to a particular hormone
by infusing it intravenously and assessing effects on base-
line brain activity as well as on task-induced activation,
e.g., tasting, smelling, or looking at foods. The same can
be done by correlating such brain responses to baseline
serum concentrations of hormones or to hormone responses
induced by a nutrient load. Such experiments have been
done for Peptide YY(43), cholecystokinin(44,45), insu-
lin(46–48), glucagon-like peptide 1(49), ghrelin(50,51) and
leptin(52–54). Most of these studies do not link brain (and
hormone) responses to actual eating behaviour and this
constitutes an important research gap that needs to be ad-
dressed if we are to understand the complex interaction
between the gut and the brain in relation to (aberrant)
eating behaviour. Similarly, the neural effects of ‘anti-
obesity’ drugs can and should be assessed not only in
animals(55) but as far as possible also in human subjects
(see e.g.(56)).

Modulating factors

Evidently, there are many, often interrelated, factors which
affect the brain response to food cues and ensuing eating
behaviour (Fig. 1). Very basic ones are age, sex, BMI and
internal state (hunger/satiety). Both age and sex affect
brain structure and function, as well as eating behaviour.
More specifically, there are many studies showing sex
effects on the responses to food, e.g.(57–61), and interactions
between sex and internal state(58,61). Of course, internal
state modulates the (brain) response to food, see
e.g.(9,18,62,63), as well as ‘resting’ brain activity (brain per-
fusion)(64,65).

Many functional studies have shown differences
between lean and obese subjects (e.g.(24–26)) or correlations
between brain responses and BMI (e.g.(40,66)). In addition,
studies looking at grey and white matter volumes (voxel-
based morphometry studies) have reported effects of
BMI(67–70). For example, in obese adults, lower grey matter
density was found in brain areas involved in taste percep-
tion, reward and behavioural control(69). Moreover, several
studies have linked brain morphology, in particular
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impairments in the orbitofrontal cortex, with cognitive
performance and eating behaviour(71,72). To a large extent,
it remains to be determined in how far structural and
functional differences between lean and obese subjects are
cause or effect, and in how far they are reversible. For
example, one study demonstrated that brain measures show
partial structural recovery with weight loss(73); however, a
functional study has suggested that aberrant responses to
food cues persist after weight loss(74). In line with this,
hormone levels continue to deviate in post-obese subjects
up to 1 year after weight loss(75).

Genetic effects

Although functional neuroimaging appears to be a power-
ful tool to investigate the relations between genes, the
brain and behaviour, and many polymorphisms have been
implicated in obesity, only few neuroimaging studies have
addressed specific polymorphisms implicated in body
weight control(25,27) (both on dopamine receptor polymor-
phisms). A primary reason for this may be that it is hard
to obtain enough suitable subjects. An indirect way of
selecting for a particular genotype (usually involving
multiple genes) may be to select extreme phenotypes(76).
This is in fact what one does, albeit in a crude way, by
selecting on extreme BMI. Thus, it may be worthwhile to
select on more specific or additional (endo)phenotypic
characteristics, such as personality characteristics or mea-
sures of eating behaviour. For example, it was shown that
cholecystokinin and leptin (receptor) polymorphisms are
associated with meal size and snacking frequency(77),
which makes these behavioural measures potential selec-
tion criteria for a genotype associated with ‘overeating’.

Personality characteristics

Evidence is mounting that variation in brain responses can
be explained by differences in personality character-
istics(78,79). Nevertheless, in spite of neural differences the
observed behaviour can be the same(19,79). For example,
Diekhof et al.(79) found that the same behavioural perfor-
mance was subserved by different neural responses in
highly impulsive and highly controlled individuals during a
task in which subjects were required to decline immediate
rewards.
There are several personality characteristics relevant for

eating behaviour. These include reward sensitivity, impul-
sivity and inhibitory potential. How such personality
characteristics affect food-induced brain responses has
hardly been investigated (one exception is(80) on reward
sensitivity). All of them have a bearing on self-regulation
capacity and specifically on the ability to resist immediate
reward in favour of a longer-term benefit, i.e., on the
ability to delay gratification. The neural correlates of self-
control, in particular in the food domain, have only been
started to be addressed recently(81,82) and the brain
mechanisms underlying conscious as well as unconscious
self-control and inter-individual differences therein need to
be explored in more detail. This constitutes an important
research area since knowledge on these mechanisms, in
particular those underlying effortless self-control(83), could

be used to develop more effective ways of improving self-
control so as to empower individuals to make healthier
food choices.

Cognitive effects

Numerous studies show that food characteristics, such as
appearance, packaging characteristics (e.g. labelling) and
price, can strongly affect expectations, sensory perception
and (eating) behaviour (e.g.(30,84,85)). Not surprisingly, this
is also apparent in the brain. For example, changing the
price label of a wine alters perceived pleasantness as well
as taste activation in the medial orbitofrontal cortex(30).
The nature and extent of such cognitive effects may
depend on subject characteristics such as BMI or dietary
restraint. For example, a low-fat label increased snack
intake more in overweight than in lean subjects(85). Product
features affecting perceived healthiness and thereby eating
behaviour are of great interest because of their bearing on
healthier eating patterns. Nevertheless, such features have
only begun to be investigated explicitly on the brain
level(26,28,81).

Another type of cognitive effect is that of (selective)
attention (and distraction) on food-induced brain responses
and eating behaviour. Many fMRI studies have shown that
selective attention increases brain activation in specific
areas for taste(86–88), odour(88,89) and food images(60,66). So
far, attention effects on brain responses remain to be cor-
related with eating behaviour (but see e.g.(66) on BMI),
although evidence from non-imaging studies suggests that
such correlations should exist. At the same time, these
findings underscore that task design and task instruction
can have strong attention-related effects on fMRI results
(see also(90)).

Do brain measures predict eating behaviour?

Neuroimaging studies in which brain responses are corre-
lated with eating behaviour are fairly scarce. Apart from
the fact that such correlations may be beyond the scope of
the study and increase study complexity, there are several
interrelated factors that hamper their study. A principal one
is sample size: behavioural studies tend to require more
subjects than brain studies and scaling up a brain study can
be costly. Furthermore, not only may behavioural measures
show considerable variability, the same is true for imaging
measures, which makes their combination prone to low
statistical power. This can be ameliorated by stringent
selection criteria, good fMRI task design and use of dedi-
cated scan sequences. Note, however, that accurate power
calculations in fMRI are far from straightforward, among
others because many factors are in play, pertaining to
hardware specifications, the scan sequence used, experi-
mental design and subject characteristics.

Food choice

Of the eating behaviours defined earlier, food choice,
although perhaps not entirely realistic in an MRI environ-
ment (or any other laboratory environment), is relatively
easy to investigate provided that visual stimuli are used.
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Basically, there are three types of choice paradigms that
have been employed in the food domain: choice (yes/no)
for single food items(28,81,91), forced choice from two
options(92) (using liquids), and choice from a set of options
(a menu)(93,94). In addition to the relatively small number
of studies specifically addressing food choices there is
much brain research on decision making and the trade-off
between different rewards and types of reward (see
e.g.(95)). In decision neuroscience, the idea that there is a
common currency in the brain for different types of reward
has received much empirical support(95); however, there is
evidence that in addition to common areas reflecting sti-
mulus reward value (ventromedial prefrontal cortex and
striatum), there are specific brain areas involved in encod-
ing the reward value of primary (food: hypothalamus) and
secondary (money: posterior cingulate) rewards(96).

Meal onset

Meal onset is hard to measure in an fMRI paradigm, thus,
to our knowledge there are no studies addressing this.
There is a fair amount of work though on anticipation and
subsequent consumption of foods, as mentioned earlier.

Food intake

To date, only a few studies with different types of stimuli
have correlated brain responses with subsequent food
intake(18,43,91). An example is shown in Fig. 2. It seems
logical that it is harder to predict intake from anticipatory
responses, e.g., responses to food images than from con-
summatory responses (i.e., tasting, such as in(18), Fig. 2). In
any case, such studies should be replicated and extended
in order to establish whether there are neural markers
for general and food-specific appetite. Note that single
meals are fairly irrelevant for long-term weight and health
outcomes(97,98). Therefore, such laboratory studies need to
be complemented with data on actual dietary behaviour.
Indeed, it is of great interest to find neural markers for

dietary behaviour. Recent studies indicate that this is
feasible on the level of BMI: brain reactivity to high-
energy foods was found to predict 3-month and 9-month
outcome in a weight-loss programme(99) and less activation
in prefrontal areas during a monetary delayed discounting
task predicted a greater rate of weight gain over the next
1–3 years(82). This shows the potential of neuroimaging
measures for subject profiling. The next step would be to
use this information to improve preventive strategies or
treatment.

Better value for research money

Ultimately, one wants to be able to model eating behaviour
of an individual in specific contexts, i.e., be able to predict
behaviour resulting from the integration of a great array of
input signals with a particular set of state and trait charac-
teristics in a brain model. Such a model system would
enable improved design of prevention strategies, interven-
tions and treatment of maladaptive patterns of eating
behaviour. This requires combining data from multiple
studies, which is something that can increase the scientific
yield from research in general and neuroimaging studies in
particular. For this one needs the following.

Standardisation of measures

In order to facilitate pooling of data, meta-analysis and
reduced variability between studies, standardisation of
measures is required. Specifically, one could agree on a
basic set of measures that is acquired from every subject.
In addition, one can then add custom measures tuned to the
specific experiment at hand. Basic measures could be, e.g.,
relevant subject characteristics, beyond already common
ones such as sex, age, and BMI. Furthermore, for neuroi-
maging experiments standardisation of data acquisition,
pre-processing and analysis would help to increase con-
sistency(100). In addition, it would be helpful if the same
(validated) fMRI tasks or the same food stimuli were used
for measuring responses to food stimuli or other relevant
brain responses such as those related to reward sensitivity
or impulsivity. A long-standing example is the Interna-
tional Affective Picture System, a database of >700 pic-
tures(101,102). Similarly, we are striving to set up a food
picture database.

Data sharing

Existing datasets can be exploited further by pooling them,
such that variation attributable to measures of interest
can be separated from noise and variance resulting from
differences in methodology and factors of no interest.
The value of a database, whether it contains brain scans or
other data, depends on the associated meta-data, such as
relevant subject characteristics. Some types of MRI data
are easier to share than others; it is relatively easy to share
resting state and anatomical data, and this is already fairly
well established. The idea to share neuroimaging data (and
link databases) is already more than 10 years old(103,104).
Nowadays, there are more and more data sharing initiatives
and databases are growing week by week. Examples are

Fig. 2. Example of a correlation between food-induced brain

responses and eating behaviour. The scattergram shows the asso-

ciation between taste-induced brain responses in the anterior cin-

gulate after a 350-ml juice preload and subsequent ad libitum juice

intake. Sweet: fruit juice (solid line), r 0.78; Savoury: tomato juice

(dashed line), r 0.70. Adapted version of a figure from(18).
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the International Neuroimaging Data-Sharing Initiative
1000 Functional Connectomes Project (holding resting
state data), Open Access Series of Imaging Studies (hold-
ing structural MRI data). Proponents of data sharing
have demonstrated the benefits(5,105) and there is growing
interest in data sharing in the neuroimaging community.
Concurrently, tools for data sharing and management
such as COINS (Collaborative Informatics and Neuroima-
ging Suite)(106) and XNAT (Extensible Neuroimaging
Archive Toolkit)(107) are under intense development.
Unfortunately, for nutritional neuroscientists, these data-
bases are unlikely to contain food-specific meta-data,
although they will contain meta-data relevant for food
scientists and neuroscientists alike, such as age and sex.

Application and development of (meta)analysis
and modelling techniques

Many, if not all, of the meta-analysis and modelling tech-
niques employed or to be employed to neuroimaging and
food science data build on existing algorithms or techni-
ques used in other fields. Several techniques of interest are
as follows.
Activation-likelihood estimation meta-analysis.

Activation-likelihood estimation (ALE) meta-analysis is a
technique used to assess common ground between neuroi-
maging studies on the same task, process or anatomic
region. It is a so-called voxel-based meta-analysis techni-
que that determines concurrence in reported peak co-
ordinates between studies(108,109). It is considered to be
much more accurate than previous methods, such
as counting anatomical labels. However, the concurrence
measure (ALE-value) is based on peak proximity and does
not take statistical significance of the reported peak voxel
into account (e.g., the Z-score) and/or size of the cluster of
significant voxels surrounding the peak voxel, or the
number of contributing studies. Unfortunately, many ALE
meta-analyses fail to report the number of studies/foci
contributing to significant clusters. This makes it harder to
assess the generalisability of reported clusters, e.g. as
in(12). When more studies contribute to an ALE-cluster,
more credible or at least generic it is. We addressed this
limitation in a meta-analysis of the brain response to food
pictures(9), by ranking clusters on the number of con-
tributing studies. Surprisingly, few clusters (only four)
survived a criterion of >33% contributing studies. We
anticipate that ALE-meta-analysis will be further devel-
oped in the near future so as to overcome its current lim-
itations.
Multivariate pattern analysis. Classic neuroimaging

analysis is ‘mass univariate’: every voxel is tested sepa-
rately, creating the need to correct for multiple compar-
isons (there are approximately 25,000 brain voxels in a
brain sampled in 4 · 4 · 4 mm voxels). In the 2000s,
neuroscientists began to employ multivariate classification
algorithms to fMRI data(110–112). The main characteristic of
multivariate pattern analysis (MVPA) is that patterns of
activation are analysed instead of single-voxel responses.
More specifically, a mathematical model that incorporates
the associations between voxel values is used to differ-
entiate between conditions. Several algorithms can be used

as the basis of such a model, e.g., support vector machines
or simple linear regression. After training the model with a
subset of the data, the model can be used to predict
responses in other trials. MVPA has been used for ‘brain
reading’ or decoding of patterns of activation, such as
predicting what a person is looking at from the pattern of
activation in the visual cortex(110,111). Another application
is the attempt to try and predict subsequent (choice)
behaviour from fMRI data obtained during exposure to
certain cues(113), i.e., choice prediction as is commonly
done in neuromarketing(114). As far as we know, only one
study applied MVPA to food choices, so as to predict
choice from brain responses to viewing products differing
in packaging characteristics(115). However, the use of
MVPA will undoubtedly continue to grow, in particular
because MVPA analysis tools have become much more
accessible.

Bayesian network modelling. Bayesian network mod-
elling is a modelling technique complementary to classical
statistical analysis. A Bayesian network is a probabilistic
graphical model, also referred to as a ‘belief network’ or a
‘causal probabilistic network’. Expert knowledge can be
used to create network structure and, subsequently, data
can be used to calculate the parameters describing the
strength of the relations between network nodes. Bayesian
networks can learn by the addition of new data. Moreover,
by changing specific parameters in the network possible
outcomes can be assessed. Alternatively, based on
new data the most likely outcomes can be inferred(116).
Despite a wide application of Bayesian networks in other
fields(117), the application to food science is new. A lay-
man’s introduction to Bayesian networks and an outline of
potential applications in the food domain have been pro-
vided recently by Phan et al.(118). Particularly interesting is
the potential to be able to assess product characteristics
such as pleasantness, while manipulating other character-
istics such as taste or odour intensity or physical product
characteristics affecting such characteristics. For example,
Phan et al. demonstrated how a combined network model
of two different studies measuring determinants of the ad
libitum intake of a tomato soup can provide additional
insights into the process of satiation(119). However, as they
indicate there are still significant methodological obstacles
that need to be addressed, in particular to facilitate
the combination of data from different studies into one
model. Ideally, studies should be designed with the inte-
gration of data already in mind, i.e., within the broader
scope of a wider encompassing model. This will involve
obtaining information beyond the scope of single studies,
such that the same measures are available from all
studies whose data are to be merged, i.e., standardisation.
If this is not done, systematic missing data in the com-
bined database will lead to unreliable parameter esti-
mation(119).

The incorporation of neuroimaging data seems to be
quite a step further, although at present it would seem
feasible to employ summary measures of imaging data, e.g.
responses in a particular region of interest the brain in a
Bayesian network model, in addition to or instead of e.g.
subjective ratings. The next step would be to incor-
porate spatial and/or temporal patterns of brain activation,
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perhaps by using classifier algorithms or independent
component analysis to summarise subject’s brain respon-
ses.

Future directions

To progress more efficiently in food research in general,
and neuroimaging in particular, needs standardisation of
measurements, data sharing (neuroimaging data+meta-
data), and the application and further development of
analysis and modelling techniques to exploit large hetero-
geneous datasets. While single studies are certainly neces-
sary, data sharing holds great promise for elucidating the
effects of multiple factors on eating behaviour. The inte-
gration of a wide array of data, ranging from genetic and
hormone data to psychological characterisations is needed
to be able to assess the effects of manipulations aimed at
e.g. changing eating behaviour within a complex of myriad
interactions. A first step in this direction would be to create
a test battery for profiling individuals so as to steer perso-
nalised interventions aimed at changing eating habits.
As yet ill-explored neuroscience research topics that

hold great potential for enabling healthier patterns of eat-
ing behaviour are (eating) habit and food preference
formation, (eating) habit modification, and the neural
mechanisms underlying self-control (in particular delayed
gratification). Related relevant research topics that have
received relatively little or no attention in human nutri-
tional neuroscience are nutrient sensing, dietary learning
and the regulation of body adiposity (see(120)). In the next
20 years, nutritional neuroscience will have to prove its
potential for providing insights that can be used to tackle
detrimental eating behaviour.
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