109 research outputs found
On Functional Activations in Deep Neural Networks
Background: Deep neural networks have proven to be powerful computational
tools for modeling, prediction, and generation. However, the workings of these
models have generally been opaque. Recent work has shown that the performance
of some models are modulated by overlapping functional networks of connections
within the models. Here the techniques of functional neuroimaging are applied
to an exemplary large language model to probe its functional structure.
Methods: A series of block-designed task-based prompt sequences were generated
to probe the Facebook Galactica-125M model. Tasks included prompts relating to
political science, medical imaging, paleontology, archeology, pathology, and
random strings presented in an off/on/off pattern with prompts about other
random topics. For the generation of each output token, all layer output values
were saved to create an effective time series. General linear models were fit
to the data to identify layer output values which were active with the tasks.
Results: Distinct, overlapping networks were identified with each task. Most
overlap was observed between medical imaging and pathology networks. These
networks were repeatable across repeated performance of related tasks, and
correspondence of identified functional networks and activation in tasks not
used to define the functional networks was shown to accurately identify the
presented task. Conclusion: The techniques of functional neuroimaging can be
applied to deep neural networks as a means to probe their workings. Identified
functional networks hold the potential for use in model alignment, modulation
of model output, and identifying weights to target in fine-tuning
Iterative annotation to ease neural network training: Specialized machine learning in medical image analysis
Neural networks promise to bring robust, quantitative analysis to medical
fields, but adoption is limited by the technicalities of training these
networks. To address this translation gap between medical researchers and
neural networks in the field of pathology, we have created an intuitive
interface which utilizes the commonly used whole slide image (WSI) viewer,
Aperio ImageScope (Leica Biosystems Imaging, Inc.), for the annotation and
display of neural network predictions on WSIs. Leveraging this, we propose the
use of a human-in-the-loop strategy to reduce the burden of WSI annotation. We
track network performance improvements as a function of iteration and quantify
the use of this pipeline for the segmentation of renal histologic findings on
WSIs. More specifically, we present network performance when applied to
segmentation of renal micro compartments, and demonstrate multi-class
segmentation in human and mouse renal tissue slides. Finally, to show the
adaptability of this technique to other medical imaging fields, we demonstrate
its ability to iteratively segment human prostate glands from radiology imaging
data.Comment: 15 pages, 7 figures, 2 supplemental figures (on the last page
Recommended from our members
Interdisciplinary college curriculum and its labor market implications
This article sheds light on how to capture knowledge integration dynamics in college course content, improves and enriches the definition and measurement of interdisciplinarity, and expands the scope of research on the benefits of interdisciplinarity to postcollege outcomes. We distinguish between what higher education institutions claim regarding interdisciplinarity and what they appear to actually do. We focus on the core academic element of student experience—the courses they take, develop a text-based semantic measure of interdisciplinarity in college curriculum, and test its relationship to average earnings of graduates from different types of schools of higher education. We observe that greater exposure to interdisciplinarity—especially for science majors—is associated with increased earnings after college graduation.
Keywords: Interdisciplinarity; higher education; income effects; measuring interdisciplinarity; curriculu
Refining susceptibility loci of chronic obstructive pulmonary disease with lung eqtls
Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of mortality worldwide. Recent genome-wide association studies (GWAS) have identified robust susceptibility loci associated with COPD. However, the mechanisms mediating the risk conferred by these loci remain to be found. The goal of this study was to identify causal genes/variants within susceptibility loci associated with COPD. In the discovery cohort, genome-wide gene expression profiles of 500 non-tumor lung specimens were obtained from patients undergoing lung surgery. Blood-DNA from the same patients were genotyped for 1,2 million SNPs. Following genotyping and gene expression quality control filters, 409 samples were analyzed. Lung expression quantitative trait loci (eQTLs) were identified and overlaid onto three COPD susceptibility loci derived from GWAS; 4q31 (HHIP), 4q22 (FAM13A), and 19q13 (RAB4B, EGLN2, MIA, CYP2A6). Significant eQTLs were replicated in two independent datasets (n = 363 and 339). SNPs previously associated with COPD and lung function on 4q31 (rs1828591, rs13118928) were associated with the mRNA expression of HHIP. An association between mRNA expression level of FAM13A and SNP rs2045517 was detected at 4q22, but did not reach statistical significance. At 19q13, significant eQTLs were detected with EGLN2. In summary, this study supports HHIP, FAM13A, and EGLN2 as the most likely causal COPD genes on 4q31, 4q22, and 19q13, respectively. Strong lung eQTL SNPs identified in this study will need to be tested for association with COPD in case-control studies. Further functional studies will also be needed to understand the role of genes regulated by disease-related variants in COPD
Iterative annotation to ease neural network training: Specialized machine learning in medical image analysis
Neural networks promise to bring robust, quantitative analysis to medical
fields, but adoption is limited by the technicalities of training these
networks. To address this translation gap between medical researchers and
neural networks in the field of pathology, we have created an intuitive
interface which utilizes the commonly used whole slide image (WSI) viewer,
Aperio ImageScope (Leica Biosystems Imaging, Inc.), for the annotation and
display of neural network predictions on WSIs. Leveraging this, we propose the
use of a human-in-the-loop strategy to reduce the burden of WSI annotation. We
track network performance improvements as a function of iteration and quantify
the use of this pipeline for the segmentation of renal histologic findings on
WSIs. More specifically, we present network performance when applied to
segmentation of renal micro compartments, and demonstrate multi-class
segmentation in human and mouse renal tissue slides. Finally, to show the
adaptability of this technique to other medical imaging fields, we demonstrate
its ability to iteratively segment human prostate glands from radiology imaging
data.Comment: 15 pages, 7 figures, 2 supplemental figures (on the last page
Imaging the functional connectivity of the Periaqueductal Gray during genuine and sham electroacupuncture treatment
Background
Electroacupuncture (EA) is currently one of the most popular acupuncture modalities. However, the continuous stimulation characteristic of EA treatment presents challenges to the use of conventional functional Magnetic Resonance Imaging (fMRI) approaches for the investigation of neural mechanisms mediating treatment response because of the requirement for brief and intermittent stimuli in event related or block designed task paradigms. A relatively new analysis method, functional connectivity fMRI (fcMRI), has great potential for studying continuous treatment modalities such as EA. In a previous study, we found that, compared with sham acupuncture, EA can significantly reduce Periaqueductal Gray (PAG) activity when subsequently evoked by experimental pain. Given the PAG's important role in mediating acupuncture analgesia, in this study we investigated functional connectivity with the area of the PAG we previously identified and how that connectivity was affected by genuine and sham EA.
Results
Forty-eight subjects, who were randomly assigned to receive either genuine or sham EA paired with either a high or low expectancy manipulation, completed the study. Direct comparison of each treatment mode's functional connectivity revealed: significantly greater connectivity between the PAG, left posterior cingulate cortex (PCC), and precuneus for the contrast of genuine minus sham; significantly greater connectivity between the PAG and right anterior insula for the contrast of sham minus genuine; no significant differences in connectivity between different contrasts of the two expectancy levels.
Conclusions
Our findings indicate the intrinsic functional connectivity changes among key brain regions in the pain matrix and default mode network during genuine EA compared with sham EA. We speculate that continuous genuine EA stimulation can modify the coupling of spontaneous activity in brain regions that play a role in modulating pain perception.National Center for Complementary and Alternative Medicine (U.S.) (PO1-AT002048)National Center for Complementary and Alternative Medicine (U.S.) (R01AT005280)National Center for Complementary and Alternative Medicine (U.S.) (R21AT00949)National Center for Complementary and Alternative Medicine (U.S.) (KO1AT003883)National Center for Complementary and Alternative Medicine (U.S.) (R21AT004497)National Center for Complementary and Alternative Medicine (U.S.) (K24AT004095)National Center for Research Resources (U.S.) (Clinical Research Center Biomedical Imaging Core, M01-RR-01066)National Center for Research Resources (U.S.) (Clinical Research Center Biomedical Imaging Core, UL1 RR025758-01)National Center for Research Resources (U.S.) (Center for Functional Neuroimaging Technologies, P41RR14075
Recommended from our members
Imaging the Functional Connectivity of the Periaqueductal Gray During Genuine and Sham Electroacupuncture Treatment
Background: Electroacupuncture (EA) is currently one of the most popular acupuncture modalities. However, the continuous stimulation characteristic of EA treatment presents challenges to the use of conventional functional Magnetic Resonance Imaging (fMRI) approaches for the investigation of neural mechanisms mediating treatment response because of the requirement for brief and intermittent stimuli in event related or block designed task paradigms. A relatively new analysis method, functional connectivity fMRI (fcMRI), has great potential for studying continuous treatment modalities such as EA. In a previous study, we found that, compared with sham acupuncture, EA can significantly reduce Periaqueductal Gray (PAG) activity when subsequently evoked by experimental pain. Given the PAG's important role in mediating acupuncture analgesia, in this study we investigated functional connectivity with the area of the PAG we previously identified and how that connectivity was affected by genuine and sham EA. Results: Forty-eight subjects, who were randomly assigned to receive either genuine or sham EA paired with either a high or low expectancy manipulation, completed the study. Direct comparison of each treatment mode's functional connectivity revealed: significantly greater connectivity between the PAG, left posterior cingulate cortex (PCC), and precuneus for the contrast of genuine minus sham; significantly greater connectivity between the PAG and right anterior insula for the contrast of sham minus genuine; no significant differences in connectivity between different contrasts of the two expectancy levels. Conclusions: Our findings indicate the intrinsic functional connectivity changes among key brain regions in the pain matrix and default mode network during genuine EA compared with sham EA. We speculate that continuous genuine EA stimulation can modify the coupling of spontaneous activity in brain regions that play a role in modulating pain perception
Impact of Statins on Gene Expression in Human Lung Tissues
Statins are 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors that alter the synthesis of cholesterol. Some studies have shown a significant association of statins with improved respiratory health outcomes of patients with asthma, chronic obstructive pulmonary disease and lung cancer. Here we hypothesize that statins impact gene expression in human lungs and may reveal the pleiotropic effects of statins that are taking place directly in lung tissues. Human lung tissues were obtained from patients who underwent lung resection or transplantation. Gene expression was measured on a custom Affymetrix array in a discovery cohort (n = 408) and two replication sets (n = 341 and 282). Gene expression was evaluated by linear regression between statin users and non-users, adjusting for age, gender, smoking status, and other covariables. The results of each cohort were combined in a meta-analysis and biological pathways were studied using Gene Set Enrichment Analysis. The discovery set included 141 statin users. The lung mRNA expression levels of eighteen and three genes were up-regulated and down-regulated in statin users (FDR < 0.05), respectively. Twelve of the up-regulated genes were replicated in the first replication set, but none in the second (p-value < 0.05). Combining the discovery and replication sets into a meta-analysis improved the significance of the 12 up-regulated genes, which includes genes encoding enzymes and membrane proteins involved in cholesterol biosynthesis. Canonical biological pathways altered by statins in the lung include cholesterol, steroid, and terpenoid backbone biosynthesis. No genes encoding inflammatory, proteases, pro-fibrotic or growth factors were altered by statins, suggesting that the direct effect of statin in the lung do not go beyond its antilipidemic action. Although more studies are needed with specific lung cell types and different classes and doses of statins, the improved health outcomes and survival observed in statin users with chronic lung diseases do not seem to be mediated through direct regulation of gene expression in the lung
- …