9 research outputs found

    Liquid–liquid phase separation of the Golgi matrix protein GM130

    Get PDF
    Golgins are an abundant class of peripheral membrane proteins of the Golgi. These very long (50–400 nm) rod-like proteins initially capture cognate transport vesicles, thus enabling subsequent SNARE-mediated membrane fusion. Here, we explore the hypothesis that in addition to serving as vesicle tethers, Golgins may also possess the capacity to phase separate and, thereby, contribute to the internal organization of the Golgi. GM130 is the most abundant Golgin at the cis Golgi. Remarkably, overexpressed GM130 forms liquid droplets in cells analogous to those described for numerous intrinsically disordered proteins with low complexity sequences, even though GM130 is neither low in complexity nor intrinsically disordered. Virtually pure recombinant GM130 also phase-separates into dynamic, liquid-like droplets in close to physiological buffers and at concentrations similar to its estimated local concentration at the cis Golgi

    A Loss of Function Screen of Identified Genome-Wide Association Study Loci Reveals New Genes Controlling Hematopoiesis

    Get PDF
    The formation of mature cells by blood stem cells is very well understood at the cellular level and we know many of the key transcription factors that control fate decisions. However, many upstream signalling and downstream effector processes are only partially understood. Genome wide association studies (GWAS) have been particularly useful in providing new directions to dissect these pathways. A GWAS meta-analysis identified 68 genetic loci controlling platelet size and number. Only a quarter of those genes, however, are known regulators of hematopoiesis. To determine function of the remaining genes we performed a medium-throughput genetic screen in zebrafish using antisense morpholino oligonucleotides (MOs) to knock down protein expression, followed by histological analysis of selected genes using a wide panel of different hematopoietic markers. The information generated by the initial knockdown was used to profile phenotypes and to position candidate genes hierarchically in hematopoiesis. Further analysis of brd3a revealed its essential role in differentiation but not maintenance and survival of thrombocytes. Using the from-GWAS-to-function strategy we have not only identified a series of genes that represent novel regulators of thrombopoiesis and hematopoiesis, but this work also represents, to our knowledge, the first example of a functional genetic screening strategy that is a critical step toward obtaining biologically relevant functional data from GWA study for blood cell traits

    Exploring the paradoxical relationship of a Creb 3 Regulatory Factor missense variant with body mass index and diabetes among Samoans: Protocol for the Soifua Manuia (Good Health) observational cohort study

    Full text link
    Background:The prevalence of obesity and diabetes in Samoa, like many other Pacific Island nations, has reached epidemic proportions. Although the etiology of these conditions can be largely attributed to the rapidly changing economic and nutritional environment, a recently identified genetic variant, rs373863828 (CREB 3 regulatory factor, CREBRF: c.1370G>A p.[R457Q]) is associated with increased odds of obesity, but paradoxically, decreased odds of diabetes.Objective:The overarching goal of the Soifua Manuia (Good Health) study was to precisely characterize the association of the CREBRF variant with metabolic (body composition and glucose homeostasis) and behavioral traits (dietary intake, physical activity, sleep, and weight control behaviors) that influence energy homeostasis in 500 adults.Methods:A cohort of adult Samoans who participated in a genome-wide association study of adiposity in Samoa in 2010 was followed up, based on the presence or absence of the CREBRF variant, between August 2017 and March 2019. Over a period of 7-10 days, each participant completed the main study protocol, which consisted of anthropometric measurements (weight, height, circumferences, and skinfolds), body composition assessment (bioelectrical impedance and dual-energy x-ray absorptiometry), point-of-care glycated hemoglobin measurement, a fasting blood draw and oral glucose tolerance test, urine collection, blood pressure measurement, hand grip strength measurement, objective physical activity and sleep apnea monitoring, and questionnaire measures (eg, health interview, cigarette and alcohol use, food frequency questionnaire, socioeconomic position, stress, social support, food and water insecurity, sleep, body image, and dietary preferences). In January 2019, a subsample of the study participants (n=118) completed a buttock fat biopsy procedure to collect subcutaneous adipose tissue samples.Results:Enrollment of 519 participants was completed in March 2019. Data analyses are ongoing, with results expected in 2020 and 2021.Conclusions:While the genetic variant rs373863828, in CREBRF, has the largest known effect size of any identified common obesity gene, very little is currently understood about the mechanisms by which it confers increased odds of obesity but paradoxically lowered odds of type 2 diabetes. The results of this study will provide insights into how the gene functions on a whole-body level, which could provide novel targets to prevent or treat obesity, diabetes, and associated metabolic disorders. This study represents the human arm of a comprehensive and integrated approach involving humans as well as preclinical models that will provide novel insights into metabolic disease

    Biallelic NAA60 variants with impaired n-terminal acetylation capacity cause autosomal recessive primary familial brain calcifications

    No full text
    Primary familial brain calcification (PFBC) is characterized by calcium deposition in the brain, causing progressive movement disorders, psychiatric symptoms, and cognitive decline. PFBC is a heterogeneous disorder currently linked to variants in six different genes, but most patients remain genetically undiagnosed. Here, we identify biallelic NAA60 variants in ten individuals from seven families with autosomal recessive PFBC. The NAA60 variants lead to loss-of-function with lack of protein N-terminal (Nt)-acetylation activity. We show that the phosphate importer SLC20A2 is a substrate of NAA60 in vitro. In cells, loss of NAA60 caused reduced surface levels of SLC20A2 and a reduction in extracellular phosphate uptake. This study establishes NAA60 as a causal gene for PFBC, provides a possible biochemical explanation of its disease-causing mechanisms and underscores NAA60-mediated Nt-acetylation of transmembrane proteins as a fundamental process for healthy neurobiological functioning
    corecore