79 research outputs found

    A Two-Step Hydrothermal Synthesis Approach to Monodispersed Colloidal Carbon Spheres

    Get PDF
    This work reports a newly developed two-step hydrothermal method for the synthesis of monodispersed colloidal carbon spheres (CCS) under mild conditions. Using this approach, monodispersed CCS with diameters ranging from 160 to 400 nm were synthesized with a standard deviation around 8%. The monomer concentration ranging from 0.1 to 0.4 M is in favor of generation of narrower size distribution of CCS. The particle characteristics (e.g., shape, size, and distribution) and chemical stability were then characterized by using various techniques, including scanning electron microscopy (SEM), FT-IR spectrum analysis, and thermalgravity analysis (TGA). The possible nucleation and growth mechanism of colloidal carbon spheres were also discussed. The findings would be useful for the synthesis of more monodispersed nanoparticles and for the functional assembly

    Low-Temperature Continuous Flow Synthesis of Metal Ammonium Phosphates

    Get PDF
    The synthesis of the high performance inorganic materials essential to the quality of modern day life is hindered by traditionalist attitudes and reliance on outdated methods such as batch syntheses. While continuous flow methods have been extensively adopted in pharmaceutical circles, they remain largely unexplored for the preparation of inorganic compounds, despite higher efficiency, safety and versatility. In this publication, we demonstrate a step-change for the synthesis of metal ammonium phosphates through conversion of the extant batch process to a low-temperature continuous regime, exhibiting a tenfold increase in throughput combined with a significant decrease in particle size

    Formation of colloidal alloy semiconductor CdTeSe magic-size clusters at room temperature

    Get PDF
    Alloy magic-size clusters (MSCs) are difficult to synthesize, in part because so little is known about how they form. Here, the authors produce single-ensemble alloy CdTeSe MSCs at room temperature by mixing prenucleation-stage solutions of CdTe and CdSe, uncovering a formation pathway that may extend to the synthesis of other alloy MSCs

    Rapid continuous microwave-assisted synthesis of silver nanoparticles to achieve very high productivity and full yield: from mechanistic study to optimal fabrication strategy

    Get PDF
    Systematic studies of silver nanoparticle synthesis in a continuous-flow single-mode microwave reactor using polyol process were performed, revealing that the synthesis is exceptionally effective to give very small metal particles at full reaction yield and very high productivity. Inlet concentration of silver nitrate or silver acetate, applied as metal precursors, varied between 10 and 50 mM, and flow rates ranged from 0.635 to 2.5 dm3/h, to give 3–24 s reaction time. Owing to its much higher reactivity, silver acetate was shown to be far superior substrate for the synthesis of small (10–20 nm) spherical silver nanoparticles within a few seconds. Its restricted solubility in ethylene glycol, applied as the solvent and reducing agent, appeared to be vital for effective separation of the stage of particle growth from its nucleation to enable rapid synthesis of small particles in a highly loaded system. This was not possible to obtain using silver nitrate. All the observations could perfectly be explained by a classical LaMer–Dinegar model of NPs’ formation, but taking into account also nonisothermal character of the continuous-flow process and acetate dissolution in the reaction system. The performed studies indicate an optimal strategy for the high-yield fabrication of metal particles using polyol method
    • …
    corecore