453 research outputs found

    Flux-vector model of spin noise in superconducting circuits: Electron versus nuclear spins and role of phase transition

    Full text link
    Superconducting Quantum Interference Devices (SQUIDs) and other superconducting circuits are limited by intrinsic flux noise with spectral density 1/fα1/f^{\alpha} with α<1\alpha<1 whose origin is believed to be due to spin impurities. Here we present a theory of flux noise that takes into account the vectorial nature of the coupling of spins to superconducting wires. We present explicit numerical calculations of the flux noise power (spectral density integrated over all frequencies) for electron impurities and lattice nuclear spins under several different assumptions. The noise power is shown to be dominated by surface electron spins near the wire edges, with bulk lattice nuclear spins contributing 5\sim 5% of the noise power in aluminum and niobium wires. We consider the role of electron spin phase transitions, showing that the spin-spin correlation length (describing e.g. the average size of ferromagnetic spin clusters) greatly impacts the scaling of flux noise with wire geometry. Remarkably, flux noise power is exactly equal to zero when the spins are polarized along the flux vector direction, forming what we call a poloidal state. Flux noise is non-zero for other spin textures, but gets reduced in the presence of correlated ferromagnetic fluctuations between the top and bottom wire surfaces, where the flux vectors are antiparallel. This demonstrates that engineering spin textures and/or inter-surface correlation provides a method to reduce flux noise in superconducting devices.Comment: New version accepted in PRB. Contains new discussion about the poloidal stat

    A Posteriori Error Estimation for the p-curl Problem

    Full text link
    We derive a posteriori error estimates for a semi-discrete finite element approximation of a nonlinear eddy current problem arising from applied superconductivity, known as the pp-curl problem. In particular, we show the reliability for non-conforming N\'{e}d\'{e}lec elements based on a residual type argument and a Helmholtz-Weyl decomposition of W0p(curl;Ω)W^p_0(\text{curl};\Omega). As a consequence, we are also able to derive an a posteriori error estimate for a quantity of interest called the AC loss. The nonlinearity for this form of Maxwell's equation is an analogue of the one found in the pp-Laplacian. It is handled without linearizing around the approximate solution. The non-conformity is dealt by adapting error decomposition techniques of Carstensen, Hu and Orlando. Geometric non-conformities also appear because the continuous problem is defined over a bounded C1,1C^{1,1} domain while the discrete problem is formulated over a weaker polyhedral domain. The semi-discrete formulation studied in this paper is often encountered in commercial codes and is shown to be well-posed. The paper concludes with numerical results confirming the reliability of the a posteriori error estimate.Comment: 32 page

    Effect of nucleon exchange on projectile multifragmentation in the reactions of 28Si + 112Sn and 124Sn at 30 and 50 MeV/nucleon

    Full text link
    Multifragmentation of quasiprojectiles was studied in reactions of 28Si beam with 112Sn and 124Sn targets at projectile energies 30 and 50 MeV/nucleon. The quasiprojectile observables were reconstructed using isotopically identified charged particles with Z_f <= 5 detected at forward angles. The nucleon exchange between projectile and target was investigated using isospin and excitation energy of reconstructed quasiprojectile. For events with total reconstructed charge equal to the charge of the beam (Z_tot = 14) the influence of beam energy and target isospin on neutron transfer was studied in detail. Simulations employing subsequently model of deep inelastic transfer, statistical model of multifragmentation and software replica of FAUST detector array were carried out. A concept of deep inelastic transfer provides good description of production of highly excited quasiprojectiles. The isospin and excitation energy of quasiprojectile were described with good overall agreement. The fragment multiplicity, charge and isospin were reproduced satisfactorily. The range of contributing impact parameters was determined using backtracing procedure.Comment: 11 pages, 8 Postscript figures, LaTeX, to appear in Phys. Rev. C ( Dec 2000

    Co-Clinical Imaging Resource Program (CIRP): Bridging the translational divide to advance precision medicine

    Get PDF
    The National Institutes of Health\u27s (National Cancer Institute) precision medicine initiative emphasizes the biological and molecular bases for cancer prevention and treatment. Importantly, it addresses the need for consistency in preclinical and clinical research. To overcome the translational gap in cancer treatment and prevention, the cancer research community has been transitioning toward using animal models that more fatefully recapitulate human tumor biology. There is a growing need to develop best practices in translational research, including imaging research, to better inform therapeutic choices and decision-making. Therefore, the National Cancer Institute has recently launched the Co-Clinical Imaging Research Resource Program (CIRP). Its overarching mission is to advance the practice of precision medicine by establishing consensus-based best practices for co-clinical imaging research by developing optimized state-of-the-art translational quantitative imaging methodologies to enable disease detection, risk stratification, and assessment/prediction of response to therapy. In this communication, we discuss our involvement in the CIRP, detailing key considerations including animal model selection, co-clinical study design, need for standardization of co-clinical instruments, and harmonization of preclinical and clinical quantitative imaging pipelines. An underlying emphasis in the program is to develop best practices toward reproducible, repeatable, and precise quantitative imaging biomarkers for use in translational cancer imaging and therapy. We will conclude with our thoughts on informatics needs to enable collaborative and open science research to advance precision medicine

    First-in-man evaluation of 124I-PGN650: A PET tracer for detecting phosphatidylserine as a biomarker of the solid tumor microenvironment

    Get PDF
    Purpose: PGN650 is a F(ab′) 2 antibody fragment that targets phosphatidylserine (PS), a marker normally absent that becomes exposed on tumor cells and tumor vasculature in response to oxidative stress and increases in response to therapy. PGN650 was labeled with 124 I to create a positron emission tomography (PET) agent as an in vivo biomarker for tumor microenvironment and response to therapy. In this phase 0 study, we evaluated the pharmacokinetics, safety, radiation dosimetry, and tumor targeting of this tracer in a cohort of patients with cancer. Methods: Eleven patients with known solid tumors received approximately 140 MBq (3.8 mCi) 124 I-PGN650 intravenously and underwent positron emission tomography–computed tomography (PET/CT) approximately 1 hour, 3 hours, and either 24 hours or 48 hours later to establish tracer kinetics for the purpose of calculating radiation dosimetry (from integration of the organ time-activity curves and OLINDA/EXM using the adult male and female models). Results: Known tumor foci demonstrated mildly increased uptake, with the highest activity at the latest imaging time. There were no unexpected adverse events. The liver was the organ receiving the highest radiation dose (0.77 mGy/MBq); the effective dose was 0.41 mSv/MBq. Conclusion: Although 124 I-PGN650 is safe for human PET imaging, the tumor targeting with this agent in patients was less than previously observed in animal studies

    Absorbed radiation dosimetry of the D3-specific PET radioligand [18F]FluorTriopride estimated using rodent and nonhuman primate

    Get PDF
    [(18)F]FluorTriopride ([(18)F]FTP) is a dopamine D(3)-receptor preferring radioligand with potential for investigation of neuropsychiatric disorders including Parkinson disease, dystonia and schizophrenia. Here we estimate human radiation dosimetry for [(18)F]FTP based on the ex-vivo biodistribution in rodents and in vivo distribution in nonhuman primates. Biodistribution data were generated using male and female Sprague-Dawley rats injected with ~370 KBq of [(18)F]FTP and euthanized at 5, 30, 60, 120, and 240 min. Organs of interest were dissected, weighed and assayed for radioactivity content. PET imaging studies were performed in two male and one female macaque fascicularis administered 143-190 MBq of [(18)F]FTP and scanned whole-body in sequential sections. Organ residence times were calculated based on organ time activity curves (TAC) created from regions of Interest. OLINDA/EXM 1.1 was used to estimate human radiation dosimetry based on scaled organ residence times. In the rodent, the highest absorbed radiation dose was the upper large intestines (0.32-0.49 mGy/MBq), with an effective dose of 0.07 mSv/MBq in males and 0.1 mSv/MBq in females. For the nonhuman primate, however, the gallbladder wall was the critical organ (1.81 mGy/MBq), and the effective dose was 0.02 mSv/MBq. The species discrepancy in dosimetry estimates for [(18)F]FTP based on rat and primate data can be attributed to the slower transit of tracer through the hepatobiliary track of the primate compared to the rat, which lacks a gallbladder. Out findings demonstrate that the nonhuman primate model is more appropriate model for estimating human absorbed radiation dosimetry when hepatobiliary excretion plays a major role in radiotracer elimination

    Design and introduction of a quality of life assessment and practice support system: perspectives from palliative care settings

    Get PDF
    Background: Quality of life (QOL) assessment instruments, including patient-reported outcome measures (PROMs) and patient-reported experience measures (PREMs), are increasingly promoted as a means of enabling clinicians to enhance person-centered care. However, integration of these instruments into palliative care clinical practice has been inconsistent. This study focused on the design of an electronic Quality of Life and Practice Support System (QPSS) prototype and its initial use in palliative inpatient and home care settings. Our objectives were to ascertain desired features of a QPSS prototype and the experiences of clinicians, patients, and family caregivers in regard to the initial introduction of a QPSS in palliative care, interpreting them in context. Methods: We applied an integrated knowledge translation approach in two stages by engaging a total of 71 clinicians, 18 patients, and 17 family caregivers in palliative inpatient and home care settings. Data for Stage I were collected via 12 focus groups with clinicians to ascertain desirable features of a QPSS. Stage II involved 5 focus groups and 24 interviews with clinicians and 35 interviews with patients or family caregivers during initial implementation of a QPSS. The focus groups and interviews were recorded, transcribed, and analyzed using the qualitative methodology of interpretive description. Results: Desirable features focused on hardware (lightweight, durable, and easy to disinfect), software (simple, user-friendly interface, multi-linguistic, integration with e-health systems), and choice of assessment instruments that would facilitate a holistic assessment. Although patient and family caregiver participants were predominantly enthusiastic, clinicians expressed a mixture of enthusiasm, receptivity, and concern regarding the use of a QPSS. The analyses revealed important contextual considerations, including: (a) logistical, technical, and aesthetic considerations regarding the QPSS as a technology, (b) diversity in knowledge, skills, and attitudes of clinicians, patients, and family caregivers regarding the integration of electronic QOL assessments in care, and (c) the need to understand organizational context and priorities in using QOL assessment data. Conclusion: The process of designing and integrating a QPSS in palliative care for patients with life-limiting conditions and their family caregivers is complex and requires extensive consultation with clinicians, administrators, patients, and family caregivers to inform successful implementation

    Energy and angular momentum sharing in dissipative collisions

    Full text link
    Primary and secondary masses of heavy reaction products have been deduced from kinematics and E-ToF measurements, respectively, for the direct and reverse collisions of 93Nb and 116Sn at 25 AMeV. Light charged particles have also been measured in coincidence with the heavy fragments. Direct experimental evidence of the correlation of energy-sharing with net mass transfer has been found using the information from both the heavy fragments and the light charged particles. The ratio of Hydrogen and Helium multiplicities points to a further correlation of angular momentum sharing with net mass transfer.Comment: 21 pages, 20 figures. Submitted to European Physics Journal
    corecore