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The National Institutes of Health’s (National Cancer Institute) precision medicine initiative emphasizes the bio-
logical and molecular bases for cancer prevention and treatment. Importantly, it addresses the need for con-
sistency in preclinical and clinical research. To overcome the translational gap in cancer treatment and
prevention, the cancer research community has been transitioning toward using animal models that more fate-
fully recapitulate human tumor biology. There is a growing need to develop best practices in translational
research, including imaging research, to better inform therapeutic choices and decision-making. Therefore,
the National Cancer Institute has recently launched the Co-Clinical Imaging Research Resource Program
(CIRP). Its overarching mission is to advance the practice of precision medicine by establishing consensus-
based best practices for co-clinical imaging research by developing optimized state-of-the-art translational
quantitative imaging methodologies to enable disease detection, risk stratification, and assessment/prediction
of response to therapy. In this communication, we discuss our involvement in the CIRP, detailing key consider-
ations including animal model selection, co-clinical study design, need for standardization of co-clinical instru-
ments, and harmonization of preclinical and clinical quantitative imaging pipelines. An underlying emphasis
in the program is to develop best practices toward reproducible, repeatable, and precise quantitative imag-
ing biomarkers for use in translational cancer imaging and therapy. We will conclude with our thoughts on
informatics needs to enable collaborative and open science research to advance precision medicine.

BACKGROUND
Co-clinical trials are an emerging area of investigation in which
a clinical trial is coupled with a preclinical study to inform the
corresponding clinical trial (1–7). The preclinical arm of the co-
clinical trial generally uses genetically engineered mouse models
(GEMMs), cell transplant models (CTMs) of human cancers or

patient-derived tumor xenografts (PDXs) to aid in therapeutic ef-
ficacy assessment, patient stratification, and optimal treatment
strategies designing (8, 9). The emergence of GEMMs, CTMs, and
PDXs as co-clinical platforms is largely motivated by the realiza-
tion that established cell lines do not recapitulate the heterogene-
ity of human tumors and the diversity of tumor phenotypes
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(10) and that better oncology models are needed to support high-
impact translational cancer research. To that end, the National
Cancer Institute’s (NCI) Patient-Derived Models Repository
(https://pdmr.cancer.gov), EuroPDX (https://www.europdx.eu),
academic institutions, and numerous commercial entities have
launched wide-ranging animal model repositories to advance the
biological and molecular bases for cancer prevention and treat-
ment toward realization of precision medicine. In light of the
prominent role of preclinical imaging in cancer research, the NCI
has recently launched the Co-Clinical Imaging Research Resource
Program (CIRP) (https://nciphub.org/groups/cirphub).

The purpose of this communication is to present our involve-
ment in the CIRP and highlight its objective and scope to the imag-
ing community. CIRP’s mission is to advance the practice of
precision medicine by establishing consensus-based best practices
for co-clinical imaging and developing optimized state-of-the-art
translational quantitative imaging methodologies to enable disease
detection, risk stratification, and assessment/prediction of response
to therapy. Operationally, CIRP is structured as a steering commit-
tee (SC) and three working groups (WGs) focused on practical
aspects of co-clinical imaging (Figure 1). Investigators of the NCI-
funded U24 award make up the steering committee and the WGs.
The WGs include animal models and co-clinical trials (AMCT),
image-acquisition and data processing (IADP), and informatics and
outreach (IMOR). The animal models and co-clinical trials focuses
on topics relevant to co-clinical oncology models and co-clinical
trial design where animal models are used in therapeutic screening,
patient stratification and to inform the clinical trial. The image-ac-
quisition and data processing focuses on optimization and stand-
ardization of image acquisition and data processing pipelines.
Finally, the informatics and outreach addresses resource-sharing
and informatics needs for preclinical and clinical imaging to sup-
port co-clinical studies. Investigators not directly funded by the
U24 mechanism may petition to join the CIRP network as associate
members. Associate members are then affiliated with one or more
of the WGs. In line with the objective of the CIRP, the SC and the
WGs tackle key issues in co-clinical trials, translational quantita-
tive imaging, and informatics.

In the ensuing sections, we will detail key considerations in
designing co-clinical imaging trials in terms of selection of

animal models, considerations in designing co-clinical imaging
studies, standardization of instruments, and harmonization of
preclinical and clinical quantitative imaging pipelines. An under-
lying emphasis is to develop best practices toward reproducible,
repeatable, and precise quantitative imaging biomarkers for use
in translational cancer imaging and therapy. We will conclude
with informatics needs to enable collaborative and open science
research to advance precision medicine.

ANIMAL MODELS AND CO-CLINICAL TRIALS
NCI’s precision medicine initiative emphasizes the use of transla-
tional oncology models to address the biological and molecular
bases of cancer prevention and treatment. As noted above, trans-
lational oncology models considered in this context include (but
are not limited to) PDXs, GEMMs, and CTMs. The advantages
and disadvantages of these models are summarized in Table 1.
Rapid disease progression presents a limitation for essentially all
mouse models of cancer used in co-clinical trials. However, co-
clinical animal models offer the opportunity for streamlined
assessment of tumor sensitivity to drugs being tested in the
human clinical study, as well as to evaluate mechanisms of treat-
ment resistance and evaluate novel drug combinations (Figure
2). Initial outcomes in the human clinical trial can influence
treatment strategies used in the mouse model and indicate
whether new models are needed for more faithful recapitulation
of the human disease process. Similarly, findings in the mouse
trial can inform selection of patients most likely to benefit from
an intervention, provide guidance for optimal imaging and bio-
specimen collection for correlative studies, and lead to adjust-
ments in therapeutic approach. In an ideal co-clinical paradigm,
the mouse trials will enable rapid transfer of information from
mouse experiments to human trials to provide information to
optimize treatment regimens with a focus on ultimately improv-
ing clinical care and patient outcomes (9).

Patient-Derived Tumor Xenografts
To date, PDX models perhaps come closest to addressing the co-
clinical, paradigm (11). The key advantages of PDXs include the
following:
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Figure 1. Organizational structure of Co-Clinical Imaging Resource Program (CIRP). Members of the steering committee
(SC) comprise investigators from within U24 awardees. The SC oversees the activities of 3 working groups (WGs) (ani-
mal models and co-clinical trials, image-acquisition and data processing [IADP], and informatics and outreach [IMOR])
focused on practical aspects of co-clinical imaging. Individuals not directly funded by the U24 mechanism may petition to
join the CIRP network as associate members. Associate members are then affiliated with one or more of theWGs.
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(1) ability to accurately reflect patients’ tumors in terms of
the histomorphology, gene expression profiles, and gene
copy number alterations (12–16); and

(2) ability to predict therapeutic response in patients,
especially when a clinically relevant drug dosage is
used (17–19).

In this model, a sample of viable tumor tissue obtained from
surgical resection of the tumor—or a solid (20) or liquid biopsy
(21)—is implanted onto immune-compromised mice, either sub-
cutaneously or orthotopically (11, 22–24). While not depicted in
Figure 2, established PDXs can be used as a renewable source of
tumor cells for generation of patient-derived organoids (PDOs)

Table 1. Use of Co-Clinical Models in Preclinical Imaging Research E

Advantages Disadvantages Considerations in Imaging

PDX

Ability to accurately reflect patients’ tumors in
terms of the histomorphology, gene mutation
and expression profiles, and gene copy num-
ber alterations

Ability to predict therapeutic response in patients

Variable take rate
Immuneocompromised background,
although efforts are underway to de-
velop humanized PDX models

Need to be credentialed/validated to
match human tumor

Need to document clinical information
regarding the tumor of origin

Genetic drift with subsequent passages
may impact phenotype

Experiments should be performed using
low passage numbers

Relative age of diseased mice is young-
er than corresponding patients

GEMMs

Gradual disease development
Intact immune system
Significant inter- and intra-tumor heterogeneity
Recapitulate histopathological features of human
tumors

High total cost
Potential long time to tumor latency
Single genetic alterations that may not
match the genetic heterogeneity of
human disease.

Variability in penetrance and latency
Potentially low mutational load

Relative age of diseased mice younger
than corresponding patients

Relatively large group size to address
inter-mice heterogeneity

CTMs of
cancer

Match of driver mutations present in patients
Faithfully maintaining underlying genetic basis of
disease present in patients

Rapidly producing large numbers of immunocom-
petent mice for treatment studies using synge-
neic bone marrow transplants

Myeloablative conditioning regimens
used to facilitate engraftment of trans-
planted HSCs in recipient animals

Accelerated course of disease relative to
patients.

Relative age of diseased mice younger
than corresponding patients

Accelerated disease progression makes
some manifestations of disease, such
as fibrosis, easier to reverse

Patient diagnosed
with tumor

Patient recruited to clinical
trial and/or receives standard

of care treatment

Initial comes
of patient

Optimal treatment
of patient with
specific cancer

Treatment strategy
can be adjusted according

to findings or the mouse
clinical trials

Response in human
patients informs
Model development
and treatment

Appropriate mouse
model of human

tumor selected or created
(PDX, GEMM, CTM, etc.)

Mouse clinical trial
conducted in parallel,

screening a panel of specific
mouse models

Initial outcomes of
mouse trial that directly
reflect human cancer

Final outcomes of
mouse trial, typically

achieved at lower costs
with more participants

Figure 2. The co-clinical preci-
sion medicine design paradigm. In
the co-clinical study design, mouse
models (patient-derived tumor xen-
ograft [PDX], genetically engi-
neered mouse model [GEMMs], or
cell transplant models [CTMs]) are
developed to match the patient’s tu-
mor genotype or subtype. In paral-
lel with the clinical trials, these
patient-matched co-clinical models
are used to assess the sensitivity of
tumors to drugs or drug combina-
tions, and thus inform the clinical
trial. (Adapted from Clohessy and
Pandolfi (9).)
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(25–27). There is also an interesting variation of the in vivo PDX
method, mini-PDX, where patient-derived tumor cells are seeded
into hollow fiber capsules that are implanted subcutaneously
into mice. The mini-PDX-bearing mice are treated with therapeu-
tics of interest for 7 days and tumor cells in tubes are assessed for
therapeutic effect (28). The authenticity of PDX models is crucial
to the validity of the studies performed with them. Meehan et al.
(29) described several key considerations for investigators inter-
ested in generating PDX models. Special attention should be
given to documenting clinical information regarding the tumor
of origin, as this can aid in identification of potential biomarkers
of therapeutic response or resistance. Patient information should
also be tracked, such as age, sex, diagnosis, race, ethnicity, treat-
ment history and response, as well as virology status (presence of
HIV, HBV, HCV, HTLV, EBV, and other viral pathogens). It is also
important to document information about the primary tumor,
such as whether tissue originated from a primary, metastatic, or
recurrent tumor, as well as specific features of histology, stage,
grade, and presence of driver mutations and loss or mutation of
key tumor suppressor genes.

Once the PDX model has been developed, details of the
mouse strain used, engraftment procedure, rate of engraft-
ment, tumor preparation before injection, passage number,
and injection site should be recorded. PDX tumors need to be
carefully validated for quality assurance (QA) based upon
histology, special stains, and short tandem repeat to ensure
authenticity of PDX samples. Genetic analysis should be per-
formed to validate any genetic drift. In particular, evaluation
of next-generation sequencing data generated from PDX
samples requires special considerations. It is important to
perform RNA sequence analysis of the primary tumor and to
compare that analysis to the RNA sequence analysis of the
PDX, as well as to accurately distinguish between sequencing
reads that originate from the host versus those arising from
the xenograft itself. Failure to correctly identify contaminat-
ing host reads can lead to incorrect mutation and expression
calls (30). It is also important to note that PDX tumors do
undergo some evolution as they are forced to adapt to grow
in a mouse host. As a result of these mouse host-induced
changes, PDX tumors can diverge from the primary patient’s
tumor from which they were derived. This genetic drift is
especially evident by distinct copy number alterations in
PDXs that accumulate with each PDX passage (31). Thus, it is
important to perform experiments with low-passage PDXs to
ensure faithful representation of the primary tumor genome.

Because PDX tumors use immune-compromised mice, one
main disadvantage is the lack of an immune component to test
the contribution of the immune response in therapeutic studies.
To address this critical need in studies of immune-oncology,
numerous mouse models have been implanted with human
CD34þ cells to reconstitute the mouse with a “human immune
system”; however, there are weaknesses for each model as
detailed elsewhere [NSG-SGM3 (32, 33), NSG-b 2m (34), MISTR
(35), and NOG-EXL (36, 37)]. Despite the nuances mentioned
above, PDXs hold great value for testing novel therapeutic regi-
mens, as well as for studying mechanisms of therapeutic
response and resistance in a variety of hematological and solid
tumors (11, 38, 39).

Genetically EngineeredMouseModels of Cancer
Genetically engineered mouse models (GEMMs) typically use tar-
geted delivery or expression of a recombinase to trigger genetic
recombination events that lead to spatially and temporally re-
stricted tumorigenesis. The Cre-lox and Flp-frt are the most com-
monly used systems. Cre is a site-specific recombinase that
deletes DNA flanked by loxP sites [ie, “floxed alleles”, FL (40)]
and similarly flippase (FLP) recognizes FLP recombinase target
sequences (ie, “frted alleles”, FRT) to facilitate targeted mutations
(41). Numerous tissue-specific Cre drivers are available to local-
ize mutations in particular tissues, and inducible Cre strains offer
an additional layer of temporal control. For example, CreER(T2)
recombinase is a tamoxifen-dependent Cre recombinase that
can be activated by systemic administration of tamoxifen or local-
ized administration of 4-hydroxytamoxifen (42). Alternatively,
viruses can be used to deliver recombinase to a particular site to
induce recombination of the mutant alleles. Multiple genes can be
altered simultaneously in the Cre-lox system, with oncogene
expression triggered by deletion of a floxed stop cassette (loxP-
STOP-loxP, “LSL”) preceding an oncogene (eg, LSL-KrasG12D) and
tumor suppressor knockout from deletion of floxed exons (43).
GEMMs offer several advantages, including autochthonous and
gradual disease development in the presence of an intact immune
system (44) recapitulating the inter- and intratumor heterogeneity
and histopathological features of the human tumor and microen-
vironment (9, 45). However, disadvantages of GEMMs include their
high cost, relatively long time to tumor onset, and use of genetic
alterations that may not exactly mimic the heterogeneity of the
individual patient’s disease. These models also lack the genetic het-
erogeneity typified by most human tumors (38). Furthermore, rela-
tively large treatment groups are typically needed for GEMM
experiments owing to the degree of variability among tumors.
GEMMs have shown utility in co-clinical trials of immunotherapy
of pancreatic cancer (46) and non–small cell lung cancer (47).
However, most GEMMs have low mutational load, which can pose
a challenge for immunotherapy studies that require tumors to
express neoantigens to engender an immune response. This chal-
lenge has recently been overcome by combining exposure to the
carcinogen 3-methylcholanthrene with Cre-mediated p53 knock-
out in p53fl/fl mice to generate a relatively high mutational load
soft tissue sarcoma (48).

Cell TransplantModels of Cancer
Cell transplant models (CTMs) represent a distinct subset of
GEMMs applied primarily to studies of hematologic cancers,
such as myeloproliferative neoplasms and leukemia that arise
from mutations arising in hematopoietic stem cells (HSCs) and
progenitor cells. To generate a CTM model of cancer, investiga-
tors isolate bone marrow from a donor animal and transduce
enriched HSCs or the total population of bone marrow cells with
recombinant retroviruses or lentiviruses expressing critical onco-
genes for a target disease (49). These types of viral vectors inte-
grate into the genome of cells, ensuring stable transmission of
key oncogenic mutations from HSCs to more differentiated he-
matopoietic cells (Figure 3). Retroviral and lentiviral vectors for
CTMs commonly include a coexpressed fluorescent protein or
other reporter molecules to facilitate detection of transduced cells
ex vivo and in recipient mice. After conditioning with whole-
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body irradiation or high-dose chemotherapy to ablate endoge-
nous HSCs, investigators transplant transduced HSCs intrave-
nously into recipient mice which hone to bone marrow niches
through signaling pathways analogous to stem cell transplants
in humans. The hematopoietic system is subsequently reconsti-
tuted with malignant progenitor and differentiated cell lineages
over several weeks. Recipient mice progressively develop features
of disease that recapitulate key pathologies evident in patients,
including increased cellularity in bone marrow (hypercellular
marrow), splenomegaly, hepatomegaly, and/or inflammatory
constitutional symptoms.

CTMs typically use syngeneic (genetically identical), immu-
nocompetent murine models for both donors and recipients of
HSC transplants, although studies have successfully transduced
human HSCs with a driver oncogene and established xenograft
models of hematologic cancer in immunocompromised mice.
Using syngeneic mice avoids complications secondary to mis-
match of donor and recipient, including graft-versus-host and
graft rejection. CTMs offer several advantages in the context of
co-clinical trials:

(1) generating cohorts of mice that match frequencies of
driver mutations present in patients receiving the same
treatment;

(2) studying disease progression and response to therapy in
mice with a full range of hematopoietic cells (syngeneic
all murine models);

(3) faithfully maintaining underlying genetic basis of disease
present in patients; and

(4) rapidly producing large numbers of mice for treatment
studies, which minimizes delays in assessing effects of
therapy in studies with sufficient animals for high statis-
tical power and rigorous validation (eg, histology).

Limitations of the model include potential adverse effects of
myeloablative conditioning regimens used to facilitate engraft-
ment of transplanted HSCs in recipient animals and accelerated
course of disease relative to patients.

CO-CLINICAL IMAGING STUDY DESIGN,
INSTRUMENTS, AND STANDARDIZATION
Standardization of clinical quantitative imaging (QI) has been
realized to a large extent by numerous initiatives, such as the
Quantitative Biomarker Alliance and NCI’s Quantitative Imaging
Network to implement advanced QI methods in clinical practice
(50–53). While these and other initiatives have had a great
impact in advancing clinical applications of QI, preclinical imag-
ing remains a critical component in the translational pipeline of
validating QI methods and imaging agents for applications in
drug discovery, cancer detection, and response to therapy assess-
ment. An inherent challenge in preclinical imaging is lack of
standardization in terms of study design and animal logistics,
image acquisition, and analysis and instrument quality control/
assurance. While generally applicable to other modalities, in the
ensuing sections, these considerations will be discussed in rela-
tion to co-clinical magnetic resonance imaging (MRI), computed
tomography (CT), and positron emission tomography (PET) in the
context of co-clinical trials.

Co-clinical Imaging Study Design and Animal Logistics
Small animals are noncompliant subjects and as such the vast
majority of small-animal imaging studies use general anesthesia,
typically isoflurane in oxygen. As mice are not able to maintain
their core body temperature while under general anesthesia, it is
necessary to use vital signs’ monitoring in combination with
active maintenance of core body temperature for preclinical
studies. Many quantitative imaging parameters are temperature-
dependent; therefore, it is critical that the animal achieves a sta-
ble core body temperature and physiological state before initia-
tion of any quantitative imaging studies (54, 55). Numerous
other factors involved in the setup for preclinical imaging have
been documented to impact imaging parameters, including anes-
thesia, animal handling, and diet (duration of fasting), among
other factors (54–61). Parameters related to animal husbandry,
including housing conditions, acclimation, chow, strain of ani-
mal, and physiological stress, may also impact the outcome of

Figure 3. Generation of CTMs for use in co-clinical trials. Investigators isolate bone marrow from a donor animal and
transduce enriched hematopoietic stem cells (HSCs) or the total population of bone marrow cells with recombinant retrovi-
ruses or lentiviruses expressing critical oncogenes for a target disease. These types of viral vectors integrate into the ge-
nome of cells, ensuring stable expression of key oncogenic mutations in HSCs and transmission of mutations to more
differentiated hematopoietic cells.
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imaging studies (56). Imaging studies typically performed during
day times, disrupt the animal’s circadian rhythms which modifies
disease metabolism in some cases (62, 63). An important consid-
eration in multicenter preclinical trials is institutional variability
in housing. A recent analysis of data derived from Mouse
Metabolic Phenotyping Centers suggests that the location (and
corresponding institution) at which a study was performed con-
tributed to differences in energy expenditure in rodents, even
when the same diet was used across institutions (64). Thus, insti-
tutional differences in animal housing may also impact preclini-
cal imaging studies. To enhance the reproducibility and the
translational impact of preclinical imaging studies, these factors
need to be considered and recorded to facilitate interpretation of
co-clinical trials.

MRI
MRI provides superb soft tissue contrast that can be manipulated
by suitable adjustment of the acquisition parameters. Image con-
trast can be sensitized to several properties of tissue water includ-
ing nuclear relaxation rate, water diffusion, blood flow, or
perfusion and chemical exchange. These properties can be quan-
titatively measured by magnetic resonance, resulting in numer-
ous biometric markers of disease state (65). Typically, an MRI
examination includes generation of a series of images with dif-
ferent contrast weighting, thereby facilitating multiparametric
analysis (66–68) and improved specificity relative to single-pa-
rameter imaging techniques. MRI may also be combined with
injectable contrast agents to provide additional information. The
reader is referred to numerous treaties describing MRI methodol-
ogies for additional details (69–71). Although a majority of MRI
techniques available clinically may be applied in preclinical
studies, there are a number of significant differences between the
available tools and methodologies that pose challenges to the de-
velopment of co-clinical studies (65).
Motion Control in Co-clinical MRI. In the clinic, physiological

motion must be addressed when imaging certain regions of the
anatomy. Various techniques, including breath-holding, parallel
acquisition (72), and fast acquisition methods such as echo pla-
nar imaging (73, 74) and fast imaging with steady-state preces-
sion (75), are often used alone or in combination to effectively
freeze the motion. Lightly anesthetized mice have physiological
motion rates that are an order of magnitude greater than those of
humans (heart rates in the range of 400–600 bpm; respiratory
rates of 60–90 breaths/min). The methods used in the clinic to
address physiological motion are either not available or not fast
enough to suppress motion artifacts in small-animal studies. It is
therefore necessary to use other means of motion correction in
preclinical studies of the abdomen or thorax. Prospective gating
(ECG and/or respiration) (76–78), retrospective gating (79, 80),
navigator echoes (81–83), and “self-gated” methods (84–86) are
commonly used to minimize motion artifacts in preclinical stud-
ies. These methods are often used in combination with sampling
schemes that have reduced sensitivity to motion including radial
(87) and spiral (88, 89) k-space trajectories.
Differences in Preclinical and Clinical MR Instrumentation.

There currently is a trend among preclinical instrument vendors
to produce static fields (B0) that mimic those used in the clinic
(1.5, 3, and 7 T). However, the B0 used in preclinical systems

varies over a broader range (1–21 T) and is typically higher than
those used in the clinical setting. The push to higher fields is
driven by the fact that the MRI signal scales somewhere between
linearly and the square of the B0 (70). The additional signal
strength is necessary to offset the limited signal-to-noise ratio
owing to the smaller voxel size required for preclinical imaging.
However, the most commonly used MRI contrast parameters
(relaxation times) are known to be B0-dependent. Both clinical
and preclinical protocols must therefore be optimized for the tar-
get field strength. This poses many challenges when developing
co-clinical trials that use significantly different field strengths.
The higher B0 used in preclinical studies is also problematic for
methods that are sensitive to magnetic susceptibility effects, as
these effects also scale with B0. Gradient echo and echo planar
imaging techniques often suffer geometric distortions and/or sig-
nal dropout owing to magnetic susceptibility effects. These
effects make single-shot techniques extremely difficult at field
strengths commonly used for preclinical studies.

The gradient system for any MRI scanner provides a mag-
netic field gradient that is within a few percent of linear over a
prescribed spherical volume at the isocenter of the magnet.
Nonlinearities in the gradient system outside of this volume lead
to reproducible geometric distortions in images acquired in this
region of space. On clinical scanners, the gradient nonlinearities
are fully characterized during installation and suitable nonlinear
deformations are applied to acquired data in order to correct for
these effects, including deformation corrections for apparent dif-
fusion coefficient maps (90). These corrections are generally not
available on preclinical scanners. It is therefore critical to assure
that the volume of interest is limited to the linear volume of the
gradient system when performing volumetric studies on preclini-
cal instrumentation. Alternatively, the nonlinearities could be
characterized and corrected as is done in the clinical case.

Calibration and QA. The American College of Radiology (ACR)
provides detailed requirements for accreditation of clinical sites
(www.acraccreditation.org/modalities/). This includes detailed
protocols for instrumentation calibration, QA tests and preventa-
tive maintenance. The ACR also routinely performs site visits to
assure that facilities adhere to recommended best practices. No
such accreditation exists for preclinical sites. Many of the best
practices provided by the ACR could be extrapolated to preclini-
cal sites. However, this is thwarted to some degree by the lack of
standard phantoms to be used of QA tests. Though numerous
phantoms have been described in the literature (91–93), there is a
lack of consensus among preclinical MRI sites as to the optimal
phantoms to be used for QA.

CT
CT is a fast and powerful anatomical x-ray-based imaging
method in which contrast is based on x-ray attenuation which is
dependent on the x-ray energy and the composition of the sub-
ject. A clinical CT system includes an x-ray tube and detector
assembled in a gantry which rotates around the subject to create
hundreds of radiographic projections. The projections are used
by a reconstruction algorithm to produce (3D) tomographic data.
The most used reconstruction algorithm for cone beam CT is fil-
tered backprojection. The contrast is based on x-ray attenuation
which is dependent on the x-ray energy and the composition of
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the subject. CT is the modality of choice for bone and lung imag-
ing. If used with contrast agents, CT can provide perfusion infor-
mation and/or cardiac function. One of the major limitations of
x-ray CT imaging is exposure to radiation. More information on
the basics of CT imaging is provided elsewhere (69–71, 94).

Differences in Preclinical and Clinical CT Instrumentation.
Preclinical CT also known as micro-CT is a volumetric imaging
method based upon the same principles and components as clini-
cal CT scanners, but delivering much higher spatial resolution
(95). There are 2 possible system design geometries in micro-CT
imaging:

(1) rotating gantry (tube and detector), and
(2) rotating specimen.

All of the current commercial systems for in vivo scanning
use the rotating gantry geometry, that is, they are scaled versions
of the clinical CT scanners. The micro-CT scanners with a rotat-
ing specimen geometry are mostly used for ex vivo imaging.

The higher resolution achievable with micro-CT is linked to
the use of microfocus x-ray tubes with small focal spots (eg, 10
mm for 8 W power) and x-ray detectors with small voxel size (eg,
20 mm). The smaller voxels of micro-CT (relative to clinical CT)
require much higher dose, as any voxel—independent of its size—
needs to interact with a certain number of x-ray photons for
adequate image quality (96, 97). If the photon noise (measured
by its variance) is kept constant and the linear dimension of the
voxel is reduced by 2 (ie, a reduction of voxel volume by 8), the
dose must be increased by up to 16 times (98, 99). Thus, the ac-
quisition protocols should be customized to minimize the x-ray
dose but this comes usually as a penalty to image quality. X-ray
radiation exposure can lead to biological damage and long-term
health effects (100). The LD50/30 whole-body radiation dose in
mice (the dose required to kill 50% of mice within 30days)
depends on many factors, but tends to be between 5 and 8Gy
(101, 102). The typical radiation dose for a single micro-CT scan
can vary widely and reported values in the literature range from
0.017Gy to 0.78Gy (101). Rodents have the ability to repair
damage from low doses of radiation (up to �0.3Gy) over the
course of several hours (103), so most low-dose micro-CT scans
should have limited biological impact, even when the same ani-
mals are longitudinally scanned over the course of a study. But
for higher-dose scans, longitudinal micro-CT imaging can poten-
tially lead to a cumulative dose that could affect biological func-
tion (particularly immune function and tumor response) and
long-term health (100). Therefore, careful consideration must be
made to determine the optimal imaging protocol for each indi-
vidual application to minimize the effects of radiation dose on
the experiment.

For small-animal micro-CT imaging, the use of clinical con-
trast agents is particularly difficult. Mice have much higher renal
clearance rates than humans, so injected contrast agents are rap-
idly excreted. To overcome the rapid clearance of traditional con-
trast agents, micro-CT can benefit from blood pool contrast
agents, exhibiting prolonged blood residence time and stable
enhancement from minutes to hours. Blood pool agents are made
up of a wide variety of high-molecular-weight compounds or
nanoparticles that avoid renal clearance owing to their large size.

Their use for micro-CT imaging has been reviewed previously
(104).

Motion Control in Co-clinical CT Imaging. An important as-
pect of in vivo imaging with micro-CT when imaging the cardio-
pulmonary system is related to physiological gating (105). Unlike
in clinical chest CT, which is performed in a single breath hold,
preclinical projection data in micro-CT must be acquired over
many breaths, requiring respiratory gating. However, both respi-
ratory and cardiac motion can lead to artifacts and blurry
appearance in reconstructed images. To compensate, gating
approaches have been developed to synchronize the projection
acquisition with physiological motion, ensuring that all projec-
tion images are acquired during the same phase of motion. There
are 3 types of gating strategies: prospective, retrospective, and
image-based gating (106). Prospective gating is being used in
scanners that operate under step-and-shoot mode, in which after
the gantry rotates to any new angle, the x-ray tube waits for a
trigger signal before acquiring the next projection image. The
trigger is based on a signal provided by a pneumatic cushion
positioned on the animal’s diaphragm or an optical measurement
(107). Typically, only 1 projection is acquired at each projection
angle (108). However, it is also possible to acquire multiple pro-
jections (called frames) at each angle, and then sum the frames
into a single projection (ie, multiframe acquisitions) to improve
signal-to-noise ratio. Retrospective (109) and image-based meth-
ods of gating have also been for micro-CT (110).

Calibration and QA. To ensure that a CT system performs well,
it is important to assess the image quality and dose routinely
using phantoms (111) especially as quantitative CT image fea-
tures are widely being investigated in radiomics for tissue pheno-
type characterization. In the animal imaging space, 1 example of
a comercially available micro-CT phantom consists of 6 separate
modular sections (resolution coils, slanted edge, geometric accu-
racy, CT number evaluation, linearity, and uniformity and noise),
each designed to evaluate 1 aspect of image quality (112). This
phantom has been used for performance evaluation for various
scan protocols with micro-CT system (113, 114). Other custom
phantoms to assess specific imaging tasks have been also
reported, for example, a phantom to assess the the voxel scaling
accuracy and it has been tested for a variety of micro-CT scan-
ners covering a range of image resolutions (115). Some anatomi-
cally correct simulated phantoms have been introduced (116)
(117). Moreover, a 4D digital mouse phantom (MOBY) exists,
providing not only anatomical detail but also realistic motion
owing to the cardiac and respiratory cycles (118).

PET
Over the years, numerous reports have highlighted considera-
tions in small-animal PET imaging (54–56). Unfortunately, de-
spite some progress, there are still gaps in standardization of
small-animal imaging protocols and QI methods to produce con-
sistent results as highlighted by recent works (119, 120).
Importantly, in line with the theme of this communication, there
is a need to harmonize preclinical and clinical PET QI pipelines
so as to enhance the translational impact of developments in PET
imaging. To harmonize clinical and small-animal PET images,
instrumentation and software factors affecting spatial resolution
and scanner sensitivity should be considered.
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Factors Affecting Spatial Resolution and Sensitivity in PET.
PET physics dictates that photon nonacolinearity and positron
range negatively contribute to the spatial resolution a system can
achieve (121). Photon noncolinearity effect on spatial resolution
is proportional to scanner radius and thus will be of importance
in human imaging system only. 18F is the most widely used nu-
clide in PET imaging. The positron from this nuclide has a maxi-
mum energy of 0.63MeV and its range contributes to a loss of
0.5mm in spatial resolution (121). This value is negligible com-
pared with other factors in human imaging but has a small
impact in small-animal PET imaging. From a camera design
standpoint, the crystal size ultimately determines the intrinsic
spatial resolution, and the detector technology has constantly
evolved over the past few decades with progressively smaller
crystals, from 6mm in the 1990’s to �3mm nowadays. Absolute
system sensitivity depends of the scanner diameter, axial field of
view (FOV), and crystal thickness. Ultimately, the performance of
a system is a compromise between sensitivity and resolution, not
a simple choice for most applications.
System Design—Clinical vs Preclinical. The current generation

of clinical PET/CT scanners are designed for whole-body imaging
and thus have a diameter of �80 cm, allowing for a patient port
of �70 cm, and are composed of a cylindrical configuration of
PET detectors. At such radius, high sensitivity is achieved with
more crystals, either thicker (2–3 cm) for increased detection effi-
ciency and/or with the use of longer-axis scanner. The current
generation of PET scanner will typically use a crystal size of �4-
mm, having a thickness of 20–30 mm and an axial FOV of �25
cm. Recent camera designs such as the Siemens Biograph Vision
pushes this limit with the use of 3.2-mm crystals and 26 cm axial
FOV. The absolute sensitivity of clinical PET/CT systems ranges
from �8 to 23 cps/KBq (0.8%–2.3%) with best spatial resolution
at �4–6 mm of full-width half-max at the central portion of the
FOV. Small-animal systems, on the other hand, can achieve bet-
ter resolution, in part, because of the smaller diameter making
the photon nonacolinearity a nonfactor, but mostly from the use
of smaller crystal size. State-of-the-art systems use�1-mm crys-
tal or achieve �1-mm spatial sampling and typically claim to
less than �1-mm spatial resolution with iterative image recon-
struction. Because the camera radius can be kept small, mouse
sensitivity of 4%–8% is typically achieved. Those values are
reported for typically wide energy acceptance windows of 350–
650 keV or even 250–750keV. This acceptance energy window is
much wider than that in the clinical setting. In mice, the scatter
fraction is small, at least smaller than in human setting. The posi-
tron range is an additional remaining factor not to be neglected
in small-animal imaging and it is unlikely that further progress
can be made in small-animal PET without consideration for posi-
tron range even when imaging with 18F.
Image Reconstruction. Most systems use statistical-iterative

image reconstruction and implement the 3D-OSEM (ordered sub-
set expectation-maximization) algorithm (122), which is based
on the maximum likelihood (ML-EM) algorithm (123) with a sub-
division of the projection views into subsets for accelerated
image reconstruction. Commonly all manufacturers will imple-
ment point spread function modeling that has the effect of
improving spatial resolution and reducing imaging noise. In the
clinical arena, point spread function modeling (124) is now

commonly available and time of flight image reconstruction is
available for most systems. In the latter, the critical parameter is
the coincidence timing resolution that most systems achieve in
<400 ps (125–127). The time of flight image reconstruction
brings the benefit of improved signal to noise. In light of differ-
ences in system design, clinical and preclinical systems offer
widely different performance levels in terms of spatial resolution
and typically, small-animal PET will have a 2- to 4-fold improved
system sensitivity over clinical PET systems. However, the imaging
scales of the subjects to be imaged are widely different. In terms of
resolution-to-scale, clinical systems have a significant advantage
over preclinical systems.

Co-clinical Radiotracer Considerations. Factors related to
radiotracers that could potentially affect the harmony of molecular
imaging co-clinical trials are numerous and worthy of a more in-
depth discussion than space allows here. However, it is worth not-
ing a number of issues that dovetail with current trends in tracer
development for cancer-specific imaging. First, specific tracer
retention mechanisms should ideally be identical, spanning model
system to human. Whether tracers are aimed at probing classic
ligand–receptor interactions or targeting enzymes that might por-
tend intracellular concentration, a first assumption is that similar
mechanisms are in place in both the model system and humans.
Parallels between the 2 systems, however, are complex. For exam-
ple, the biochemical rates that might enzymatically concentrate a
radiotracer within cells may be quite different between humans
and models and result in different trapping rates. Even more criti-
cal, the specific targets of radiotracers might not be expressed to
the same level, or even at all, in both species. Because targets of
radiotracers may be expressed at different levels (concentrations),
of particular consideration are mass effects and specific activity
considerations (128) which may impact quantitative imaging mea-
surement in co-clinical trial settings. Moreover, immune-oncology
provides the latest examples where species-specific selectivity ren-
ders certain radiotracers active in one system but agnostic in
others. Described elsewhere in this publication are humanized
mouse model systems that aim to address the conundrum of spe-
cies selectivity. Other factors that must be considered but are not
necessarily insurmountable include species-specific physiology
and metabolism. However, sophisticated imaging and parallel bio-
chemical analyses can help in normalizing differences across spe-
cies and scale. Imaging protocols can also be developed that
minimize the effect of diet on results, which could be of particular
importance with respect to cancer metabolism.

Phantoms for Calibration andQA
Clinical phantoms. The ACR (American College of Radiology) has
developed a widely accepted phantom used for quality control and
site qualification for clinical trials in PET/CT (129). The phantom
consists of specially designed top flange to the widely adopted
Jaszczak phantom (Peter Esser flange). The contains 4 fillable cyl-
inders, 25mm in length, 8, 12, 16, and 25mm in diameter (hot
lesions), in addition to 2 additional fillable 25-mm-diameter cylin-
ders (air and nonradioactive water), and a solid polytetrafluoroeth-
ylene (PTFE) cylinder (mimicking bones) are included. A cold-rod
section is inserted at the other end of the phantom to provide a
means to estimate the scanner spatial resolution through visual
inspection. The phantom is typically prepared in a protocol trying
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to emulate a clinical FDG PET imaging scenario to define the ac-
tivity levels in the hot lesions and background area. A ratio of 4:1
of activity concentration in the hot lesions relative to background
is typically chosen. The phantom is then imaged as per the site
clinical imaging protocol in use for FDG oncology PET/CT
patients. At this set activity ratio and typical scan time, and stand-
ard image reconstruction algorithm and parameter set for clinical
applications, the smallest hot lesion would be typically barely visi-
ble. Maximum values in the hot cylinders provide a measurement
of count recovery as a function of object size, but these values are
used for only site qualification and not for scanner performance.
The uniform water section of the phantom allows the measure-
ment of absolute scanner quantification accuracy, in plane uni-
formity and across plane uniformity (at least for a few centimeters
of its axial section). This phantom was designed to allow easy
preparation and to allow the measurement of a number of parame-
ters useful to compare imaging performance of a scanner (and the
chosen reconstruction) for the clinical task of clinical oncological
FDG-PET imaging in the setting of clinical trials.

Other phantoms have been reported to investigate the depend-
ence of PET image bias on CT-based attenuation correction (130).
In the clinical setting, the NEMA IEC phantom is used routinely
(131). The NEMA IEC phantom is composed of a hollow chamber,
is water-fillable, and contains 6 fillable spheres (10–37 mm) in its
midsection. Cylindrical insert (50-mm-diameter) filled with a mix-
ture of Styrofoam beads and water is inserted in the phantom to
represent lung material. This phantom is typically used for accep-
tance testing according to NEMA NU-2 standard and EANM/EARL
accreditation (132). Typical filling procedure consists of a 10:1 ratio
between the sphere and background at total activity commensurate
to standard 18F-FDG oncologic FDG PET/CT applications. This
phantom allows measuring size-dependent (contrast)-recovery
curve, background variability, absolute scanner calibration, and
scattering correction accuracy. More recently the SNMMI-CTN PET
phantom was developed to validate scanners at sites that wish to
participate in oncology clinical trials (133). The CTN oncology clin-
ical simulator phantom is an anthropomorphic chest phantom with
lung fields and 6 spherical objects with inner diameters ranging
from 7 to 20mm reproducibly secured at specific locations within
the phantom. This phantom allows the measurement of contrast re-
covery curves, and their reproducibility, for realistic lesion and
operational clinical image reconstruction settings.
Preclinical phantoms. For small-animal scanners, the NEMA

NU-4 2008 proposes a mouse size image quality phantom that
has been used to compare preclinical PET imaging systems (134).
The phantom consists of a Lucite cylinder with, at one end, a 5
fillable rod pattern with diameter 1–5mm for count recovery
measurement, and at the other end, 2 small 8-mm-diameter lung
inserts to evaluate scatter correction efficiency. A fillable water
section in the middle allows the measurement of in-plane uni-
formity. The design was chosen to allow for a robust and easy-
to-fill phantom and was initially designed for the purpose of
scanner comparison. The fillable hot rod simplifies construction
and avoids the problem of spheres with a cold wall. The hot rod-
like lesions were chosen to be of diameter commensurate to
organ sizes in mice; however, these are cylindrical in shape, not
spherical. The recovery values are to be expected to be larger in
rod-like objects relative to sphere-like objects. Importantly, the

rod-like lesion sizes are of appropriate size to challenge most
small-animal PET imaging systems and thus one can evaluate
the quantitative performance for imaging small objects with this
phantom for the purpose of comparing animal scanners. Preclinical
phantoms play a critical role in harmonizing preclinical instru-
ments across multiple sites (120).

PRECISION AND ACCURACY IN QUANTITATIVE
IMAGING
There are a variety of considerations that must be made to ac-
quire preclinical imaging data that best serve a study. Although
the endpoints and acquisition goals will vary by study, all imag-
ing data sets should be analyzed with a functional understanding
of sources of variability and uncertainty in the data. The
National Institutes of Standards and Technology cites 3 underly-
ing sources of uncertainty in the clinical study and implementa-
tion of quantitative imaging biomarkers (135). The first is
variability caused by the devices used to capture images, or
instrumentation variance. The second is variability in image
interpretation by clinicians/technicians, or reader variance. The
third is variability owing to intrinsic properties of the biology, or
biological variance. These uncertainties exist in both preclinical
and clinical imaging domains, highlighting the need to define
the appropriate methods by which data are measured, inter-
preted, and validated (136). Unfortunately, the deficit in standar-
dized metrics for preclinical imaging and analysis is even greater
than that faced by clinical imaging scientists and technicians.
Although certain challenges are specific to modality, a general
foundation for defining and assessing the utility of imaging bio-
markers is assessing their reproducibility and repeatability.

Numerous methods are used to assess reproducibility of
image metrics including Lin’s concordance correlation coeffi-
cient (137) and Bland–Altman analysis (BA) (138). The Lin’s con-
cordance correlation coefficient, is the product of the Pearson
correlation coefficient and the bias correction factor and
accounts for both precision and accuracy. The method outlined
by Watson and Petrie (139) is typically used to calculate these
metrics. The procedure used to calculate the statistical parameters
for the BA plots are summarized by Galbraith (140) and Raunig
(141). To assess reproducibility between image metrics derived
from consecutive days, it is important to test that the “day 1” vs
“day 2” absolute differences are independent of the means using
Kendall tau test for correlation (140). Let D denote the within-
mouse difference between the measurements, and N denote the
number of paired measurements. The standard deviation for the
mean difference is calculated using the following equation:

dsd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oðDiÞ2

N

s
;

and the within-subject standard deviation (wSD), using the fol-
lowing equation:

wSD ¼ dsdffiffiffi
2

p

The 95% confidence limits in the BA plots are the limits of
agreement defined as the mean difference 6 the repeatability
coefficient (RC).
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RC ¼ 1:97� ffiffiffi
2

p � wSD ¼ 2:77� wSD

These limits are independent of the sample size so that the
results from an individual test–retest experiment is expected to
fall within these boundaries 95% of the time. Guidelines for the
implementation of these techniques in evaluating QI biomarkers
(142) and for improved precision in multicenter trials has been
reported recently (143). Importantly, there have been numerous
applications of these techniques in biomedical imaging in both
preclinical (55, 144–148) and clinical (149–153) settings.

CORRELATIVE BIOLOGY IN VALIDATION OF QI
BIOMARKERS
The value proposition of medical imaging is that it can interro-
gate human biology in vivo, noninvasively, spatially, or longitu-
dinally, and thus provides diagnostic, predictive, and therapeutic
insights to manage patient outcome. In addition to validating the
precision and accuracy of QI imaging metrics (as outlined in
Precision and Accuracy of Quantitative Imaging section), ideally
QI metrics for a given biomarker need to be validated against the
underlying biology. A “biomarker” is defined as a characteristic
that is objectively measured and evaluated as an indicator of
normal biological processes, pathogenic processes, or responses
to a therapeutic intervention (154). Thus, an imaging biomarker
is an objective QI metric derived from an in vivo image for a
given biomarker. Traditionally, clinical QI biomarkers have been
validated by statistical analyses against measures of outcome.
More often, tissue biopsies are available and can be used to cor-
relate in vivo QI metrics to measures pathology or OMICS (among
others) measures. In contrast to biopsies, in vivo images can pro-
vide information about the spatial heterogeneity of the whole tu-
mor, albeit at lower resolution. With the advent of radiomics
(155, 156), there is an underlying effort to validate image fea-
tures against pathological or genomic features of tumor hetero-
geneity derived from biopsies (157–165). However, there are
numerous complicating nuances in correlating a QI metric
derived from a clinical image to features derived from a biopsy;
these nuances include mismatches in scale, discrepancies in core-
gistration, and importantly single point (needle) biopsies may
not reflect the pathobiology of the whole tumor. The use of co-
clinical models thus enables correlation and validation QI metrics
against the underlying heterogeneous biology of co-clinical
human tumor models when human specimen is scarce.

INFORMATICS NEEDS TO SUPPORT CO-CLINICAL
RESEARCH
The preclinical imaging workflow is somewhat complex, routinely
using multiple instruments to characterize the physiology and biol-
ogy of a given tumor in vivo. To validate in vivo imaging measure-
ments, in vitro or ex vivo multiscale assays such as pathology,
-OMICS (genomics, proteomics, metabolomics, etc.), immunohisto-
chemistry, multiplexed immunofluorescence are used to correlate
quantitative image–derived measurements to ex vivo measures.
When multiplied by the number of subjects (animals) per group in
a given experiment, multitudes of interventions (eg, drugs), de-
scriptive data (weight, diet, tumor volume, blood, metabolic panel
data, etc.) and the number of time-points in a longitudinal imaging

protocol, the resulting data sets are vast and prohibitive to track
and manage long term. As a consequence, nontractable data result
in poor reproducibility and present obstacles for open science col-
laboration and data mining.

To that end, informatics solutions are needed to support
co-clinical imaging research including collection of metadata
to qualify co-clinical imaging studies. For example, a recent
guideline on the use of PDX in preclinical research (29), lists
�45 fields (metadata) to capture to qualify research results.
Importantly, there is a need for harmonization and integration
of preclinical cancer imaging data, imaging acquisition proto-
cols, and annotation. Legacy preclinical imaging databases are
not equipped to support big data science and collection of
metadata/annotations to support NCI’s precision medicine ini-
tiative. Although some institutions have developed databases
to house preclinical imaging data, many such legacy databases
are not compatible with the complexity and growing demands
in preclinical cancer imaging which include big data needs
and collection of metadata/annotation to support NCI’s precision
medicine initiative. Importantly, the increasing prevalence of quan-
titative acquisition and analysis approaches depend on sophisti-
cated computational methods that generate additional derived
data. Given these “big data” challenges, informatics tools are
needed that have the capacity to organize data structures, enforce
QA practices, generate audit trails and provenance records, provide
detailed reports and data tracking tools, and ultimately facilitate
data analysis.

Lack of reproducibility in preclinical cancer research, includ-
ing imaging, has been highlighted by numerous publications
(119, 166). Other than promoting open science, data sharing
has been suggested as one solution to address reproducibility.
Similarly, sharing of quantitative imaging pipelines is expected
to enhance reproducibility, as it will allow for testing of multiple
analytic pipelines using a common data set for comparison and
validation. The NCI has chosen to establish an open environ-
ment in which the oncology community can collaborate
to tackle the sundry issues that pertain to reproducibility of
animal model research as required for precision medicine.
Prominent among those issues is transparency of details that
document imaging experiments and their application to trans-
lational research. Thus, informatics tools and platforms are
needed to enhance reproducibility in preclinical imaging, ena-
ble data mining with collection of metadata and annotations
tools, and promote open science.

SUMMARY
Advances in clinical QI have been realized to a large extent
by numerous initiatives such as the Quantitative Imaging
Network and the Quantitative Imaging Biomarker Alliance to
standardize and implement advanced QI methods in clinical
practice. Although these and other initiatives have had a signifi-
cant impact in advancing clinical applications of QI, preclinical
imaging plays a critical role in developing in vivo translational
imaging strategies to interrogate disease mechanisms, detect dis-
ease, and asses/predict response to therapy. The use of co-clinical
animal models of cancer ushers-in new paradigms involving co-
clinical trials where biological and molecular mechanisms of
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disease as well as therapeutic strategies can be investigated in
relevant human cancer models in parallel with clinical trials to
support translational imaging investigations. In this context, the
NCI’s precision medicine initiative emphasizes the biological and
molecular bases for cancer prevention and treatment, as well as
consistency/harmonization in preclinical and clinical research,
including QI. The CIRP, therefore, was organized to devise best
practices for co-clinical imaging and to develop optimized state-

of-the-art translational quantitative imaging methodologies to
enable disease detection, risk stratification, and assessment/pre-
diction of response to therapy. It is expected that the quest for
best practices will neither result in reduced creativity nor hamper
progress in preclinical imaging science, as some may conjecture.
Rather such creativity should be viewed as investment towards
progress in translational imaging and its role in guiding precision
medicine into the next decade.

ACKNOWLEDGMENTS
The research agenda outlined in this communication is supported by the Washington
University Co-Clinical Imaging Research Resource, NCI Grant # U24CA209837 and
Siteman Cancer Center Support Grant P30CA091842; the Duke Preclinical Research
Resources for Quantitative Imaging Biomarkers, NCI Grant # U24CA220245;
Integrating OMICS and Quantitative Imaging Data in Co-Clinical Trials to Predict
Treatment Response in Triple Negative Breast Cancer, NCI Grant # U24CA226110 and

CPRIT RR160005 (T.E.Y. is a CPRIT Scholar of Cancer Research); University of Michigan
Quantitative Imaging Research, NCI Grant # U24CA237683; Vanderbilt University-PET
imaging Resource to Enhance Delivery of Individualized Cancer Therapeutics, NCI Grant
# U24CA220325; and PENN Quantitative MRI Resource for Pancreatic Cancer, NCI
Grant # U24CA231858.

REFERENCES
1. Chen Z, Akbay E, Mikse O, Tupper T, Cheng K,Wang Y, Tan X, Altabef A,Woo S-

A, Chen L, Reibel JB, Janne PA, Sharpless NE, Engelman JA, Shapiro GI, Kung AL,
Wong K-K. Co-clinical trials demonstrate superiority of crizotinib to chemotherapy in
ALK-rearranged non-small cell lung cancer and predict strategies to overcome resist-
ance. Clin Cancer Res. 2014;20:1204–1211.

2. Kim HR, Kang HN, Shim HS, Kim EY, Kim J, Kim DJ, Lee JG, Lee CY, HongMH, Kim
SM, Kim H, Pyo KH, Yun MR, Park HJ, Han JY, Youn HA, Ahn MJ, Paik S, Kim TM,
Cho BC. Co-clinical trials demonstrate predictive biomarkers for dovitinib, an FGFR
inhibitor, in lung squamous cell carcinoma. Ann Oncol. 2017;28:1250–1259.

3. Kwong LN, Boland GM, Frederick DT, Helms TL, Akid AT, Miller JP, Jiang S, Cooper
ZA, Song X, Seth S, Kamara J, Protopopov A, Mills GB, Flaherty KT,Wargo JA,
Chin L. Co-clinical assessment identifies patterns of BRAF inhibitor resistance in mela-
noma. J Clin Invest. 2015;125:1459–1470.

4. Lunardi A, Ala U, EppingMT, Salmena L, Clohessy JG,Webster KA,Wang G,
Mazzucchelli R, Bianconi M, Stack EC, Lis R, Patnaik A, Cantley LC, Bubley G,
Cordon-Cardo C, GeraldWL, Montironi R, Signoretti S, LodaM, Nardella C,
Pandolfi PP. A co-clinical approach identifies mechanisms and potential therapies
for androgen deprivation resistance in prostate cancer. Nat Genet. 2013;45:747–
755.

5. Nishino M, Sacher AG, Gandhi L, Chen Z, Akbay E, Fedorov A,Westin CF, Hatabu
H, Johnson BE, Hammerman P,Wong KK. Co-clinical quantitative tumor volume
imaging in ALK-rearrangedNSCLC treated with crizotinib. Eur J Radiol.
2017;88:15–20.

6. Owonikoko TK, Zhang G, Kim HS, Stinson RM, Bechara R, Zhang C, Chen Z, Saba
NF, Pakkala S, Pillai R, Deng X, Sun S-Y, Rossi MR, Sica GL, Ramalingam SS, Khuri
FR. Patient-derived xenografts faithfully replicated clinical outcome in a phase II co-
clinical trial of arsenic trioxide in relapsed small cell lung cancer. J Transl Med.
2016;14:111.

7. Sia D, Moeini A, Labgaa I, Villanueva A. The future of patient-derived tumor xeno-
grafts in cancer treatment. Pharmacogenomics. 2015;16:1671–1683.

8. Cho SY, KangW, Han JY, Min S, Kang J, Lee A, Kwon JY, Lee C, Park H. An integra-
tive approach to precision cancer medicine using patient-derived xenografts. Mol
Cells. 2016;39:77–86.

9. Clohessy JG, Pandolfi PP. Mouse hospital and co-clinical trial project—from bench
to bedside. Nat Rev Clin Oncol. 2015;12:491–498.

10. Sulaiman A,Wang L. Bridging the divide: preclinical research discrepancies
between triple-negative breast cancer cell lines and patient tumors. Oncotarget.
2017;8:113269–113281.

11. Gao H, Korn JM, Ferretti S, Monahan JE,Wang Y, SinghM, Zhang C, Schnell C,
Yang G, Zhang Y, Balbin OA, Barbe S, Cai H, Casey F, Chatterjee S, Chiang DY,
Chuai S, Cogan SM, Collins SD, Dammassa E, Ebel N, EmbryM, Green J,
Kauffmann A, Kowal C, Leary RJ, Lehar J, Liang Y, Loo A, Lorenzana E, Robert
McDonald E, McLaughlin ME, Merkin J, Meyer R, Naylor TL, Patawaran M, Reddy
A, Röelli C, Ruddy DA, Salangsang F, Santacroce F, Singh AP, Tang Y, TinettoW,
Tobler S, Velazquez R, Venkatesan K, Von Arx F,Wang HQ,Wang Z,Wiesmann
M,Wyss D, Xu F, Bitter H, Atadja P, Lees E, Hofmann F, Li E, Keen N, Cozens R,
Jensen MR, Pryer NK,Williams JA, Sellers WR. High-throughput screening using
patient-derived tumor xenografts to predict clinical trial drug response. Nat Med.
2015;21:1318–1325.

12. DeRose YS,Wang G, Lin Y-C, Bernard PS, Buys SS, Ebbert MTW, Factor R, Matsen
C, Milash BA, Nelson E, Neumayer L, Randall RL, Stijleman IJ, Welm BE,Welm AL.
Tumor grafts derived from women with breast cancer authentically reflect tumor pa-
thology, growth, metastasis and disease outcomes. Nat Med. 2011;17:1514–
1520.

13. Zhao X, Liu Z, Yu L, Zhang Y, Baxter P, Voicu H, Gurusiddappa S, Luan J, Su JM,
Leung HC. E, Li XN. Global gene expression profiling confirms the molecular fidelity
of primary tumor-based orthotopic xenograft mouse models of medulloblastoma.
Neuro Oncol. 2012;14:574–583.

14. Morton CL, Houghton PJ. Establishment of human tumor xenografts in immunodefi-
cient mice. Nat Protoc. 2007;2:247–250.

15. Reyal F, Guyader C, Decraene C, Lucchesi C, Auger N, Assayag F, De Plater L,
Gentien D, PouponM-F, Cottu P, De Cremoux P, Gestraud P, Vincent-Salomon A,
Fontaine J-J, Roman-Roman S, Delattre O, Decaudin D, Marangoni E. Molecular
profiling of patient-derived breast cancer xenografts. Breast Cancer Res. 2012;14:
R11.

16. Krepler C, Xiao M, Spoesser K, Brafford PA, Shannan B, Beqiri M, XuW,Garman
B, Nathanson KL, Xu X, Karakousis G, Mills GB, Lu Y, Caponigro G, BoehmM,
Peters M, Schuchter L, Herlyn M. Personalized pre-clinical trials in BRAF inhibitor re-
sistant patient derived xenograft models identify second line combination therapies.
Clin Cancer Res. 2016;22:1592–1602.

17. Kerbel RS. Human tumor xenografts as predictive preclinical models for anticancer
drug activity in humans: better than commonly perceived-but they can be improved.
Cancer Biol Ther. 2003;2:S134–9.

18. Johnson JI, Decker S, Zaharevitz D, Rubinstein LV, Venditti JM, Schepartz S,
Kalyandrug S, Christian M, Arbuck S, HollingsheadM, Sausville EA. Relationships
between drug activity in NCI preclinical in vitro and in vivo models and early clinical
trials. Br J Cancer. 2001;84:1424–1431.

19. Scholz CC, Berger DP,Winterhalter BR, Henss H, Fiebig HH. Correlation of drug
response in patients and in the clonogenic assay with solid human tumour xeno-
grafts. Eur J Cancer. 1990;26:901–905.

20. Allaway RJ, Fischer DA, de Abreu FB, Gardner TB, Gordon SR, Barth RJ, Colacchio
TA,WoodM, Kacsoh BZ, Bouley SJ, Cui J, Hamilton J, Choi JA, Lange JT, Peterson
JD, Padmanabhan V, Tomlinson CR, Tsongalis GJ, Suriawinata AA, Greene CS,
Sanchez Y, Smith KD. Genomic characterization of patient-derived xenograft mod-
els established from fine needle aspirate biopsies of a primary pancreatic ductal ad-
enocarcinoma and from patient-matched metastatic sites. Oncotarget.
2016;7:17087–17102.

21. Girotti MR, Gremel G, Lee R, Galvani E, Rothwell D, Viros A, Mandal AK, Lim KHJ,
Saturno G, Furney SJ, Baenke F, PedersenM, Rogan J, Swan J, Smith M, Fusi A,
Oudit D, Dhomen N, Brady G, Lorigan P, Dive C, Marais R. Application of sequenc-
ing, liquid biopsies, and patient-derived xenografts for personalized medicine in
melanoma. Cancer Discov. 2016;6:286–299.

22. Huang S, Lira P,Wang K, Zhang C, Jackson-Fisher A, Ching K. Molecular profiling
of AML patient derived xenograft models with deep sequencing using a 109 AML
associated gene panel and a 409 gene comprehensive cancer panel. Cancer Res.
2015:75.

23. Qi L, Kogiso M, Du Y, Lindsay H, Zhang H, Zhao S, Braun FK, Shu Q, Yu L, Zhao X,
Liu Z, Huang Y, Perlaky L, Su J, Baxter P, Adesina A, Parsons DW, Chintagumpala
M, Li XN. A comprehensive panel of patient-derived orthotopic xenograft mouse
models of malignant pediatric brain tumors. Neuro Oncol. 2016;18:139-.

Co-Clinical Imaging Resource Program

TOMOGRAPHY.ORG I VOLUME 6 NUMBER 3 I SEPTEMBER 2020 283



24. Krepler C, Sproesser K, Brafford P, Beqiri M, Garman B, Xiao M, Shannan B,
Watters A, PeregoM, Zhang G, Vultur A, Yin X, Liu Q, Anastopoulos IN,
Wubbenhorst B,WilsonMA, XuW, Karakousis G, FeldmanM, Xu X, Amaravadi R,
Gangadhar TC, Elder DE, Haydu LE,Wargo JA, Davies MA, Lu Y, Mills GB,
Frederick DT, Barzily-Rokni M, Flaherty KT, Hoon DS, Guarino M, Bennett JJ, Ryan
RW, Petrelli NJ, Shields CL, Terai M, Sato T, Aplin AE, Roesch A, Darr D, Angus S,
Kumar R, Halilovic E, Caponigro G, Jeay S,Wuerthner J,Walter A, Ocker M, Boxer
MB, Schuchter L, Nathanson KL, Herlyn M. A comprehensive patient-derived xeno-
graft collection representing the heterogeneity of melanoma. Cell Rep.
2017;21:1953–1967.

25. Romero-Calvo I,Weber CR, Ray M, BrownM, Kirby K, Nandi RK, Long TM,
Sparrow SM, Ugolkov A, QiangW, Zhang Y, Brunetti T, Kindler H, Segal JP,
Rzhetsky A, Mazar AP, Buschmann MM,Weichselbaum R, Roggin K,White KP.
Human organoids share structural and genetic features with primary pancreatic ade-
nocarcinoma tumors. Mol Cancer Res. 2019;17:70–83.

26. Okazawa Y, Mizukoshi K, Koyama Y, Okubo S, Komiyama H, Kojima Y, Goto M,
Habu S, Hino O, Sakamoto K, Orimo A. High-sensitivity detection of micrometasta-
ses generated by GFP lentivirus-transduced organoids cultured from a patient-
derived colon tumor. J Vis Exp. 2018;14.

27. Beshiri ML, Tice CM, Tran C, Nguyen HM, Sowalsky AG, Agarwal S, Jansson KH,
YangQ,McGowen KM, Yin J, Alilin AN, Karzai FH, DahutWL, Corey E, Kelly K. A
PDX/Organoid Biobank of advanced prostate cancers captures genomic and phe-
notypic heterogeneity for disease modeling and therapeutic screening. Clin Cancer
Res. 2018;24:4332–4345.

28. Zhang FF, WangWJ, Long Y, Liu H, Cheng JJ, Guo L, Li R, Meng C, Yu S, Zhao Q,
Lu S,Wang L,Wang H,Wen D. Characterization of drug responses of mini patient-
derived xenografts in mice for predicting cancer patient clinical therapeutic
response. Cancer Commun (Lond). 2018;38:60.

29. Meehan TF, Conte N, Goldstein T, Inghirami G, Murakami MA, Brabetz S, Gu Z,
Wiser JA, Dunn P, Begley DA, Krupke DM, Bertotti A, Bruna A, Brush MH, Byrne AT,
Caldas C, Christie AL, Clark DA, Dowst H, Dry JR, Doroshow JH, DuchampO,
Evrard YA, Ferretti S, Frese KK, Goodwin NC, Greenawalt D, Haendel MA,
Hermans E, Houghton PJ, Jonkers J, Kemper K, Khor TO, Lewis MT, Lloyd KCK,
Mason J, Medico E, Neuhauser SB, Olson JM, Peeper DS, Rueda OM, Seong JK,
Trusolino L, Vinolo E,Wechsler-Reya RJ,Weinstock DM,Welm A,Weroha SJ,
Amant F, Pfister SM, Kool M, Parkinson H, Butte AJ, Bult CJ. PDX-MI: minimal infor-
mation for patient-derived tumor xenograft models. Cancer Res. 2017;77:e62-e6.

30. Khandelwal G, Girotti MR, Smowton C, Taylor S,Wirth C, Dynowski M, Frese KK,
Brady G, Dive C, Marais R, Miller C. Next-generation sequencing analysis and
algorithms for PDX and CDX models. Mol Cancer Res. 2017;15:1012–1016.

31. Ben-David U, HaG, Tseng Y-Y, Greenwald NF, Oh C, Shih J, McFarland JM,Wong
B, Boehm JS, Beroukhim R, Golub TR. Patient-derived xenografts undergo mouse-spe-
cific tumor evolution. Nat Genet. 2017;49:1567–1575.

32. Rau RE. CMML/JMML PDXs: as easy as 1, 2, NSG-SGM3. Blood. 2017;130:385–
386.

33. Yoshimi A, Balasis ME, Vedder A, Feldman K, Ma Y, Zhang H, Lee SC-W, Letson C,
Niyongere S, Lu SX, Ball M, Taylor J, ZhangQ, Zhao Y, Youssef S, Chung YR,
Zhang XJ, Durham BH, YangW, List AF, Loh ML, Klimek V, Berger MF, Stieglitz E,
Padron E, Abdel-WahabO. Robust patient-derived xenografts of MDS/MPN over-
lap syndromes capture the unique characteristics of CMML and JMML. Blood.
2017;130:397–407.

34. BrehmMA, Kenney LL, Wiles MV, Low BE, Tisch RM, Burzenski L, Mueller C,
Greiner DL, Shultz LD. Lack of acute xenogeneic graft- versus-host disease, but reten-
tion of T-cell function following engraftment of human peripheral blood mononuclear
cells in NSG mice deficient in MHC class I and II expression. FASEB J.
2019;33:3137–3151.

35. Rongvaux A,Willinger T, Martinek J, Strowig T, Gearty SV, Teichmann LL, Saito Y,
Marches F, Halene S, Palucka AK, ManzMG, Flavell RA. Development and function
of human innate immune cells in a humanized mouse model. Nat Biotechnol.
2014;32:364–372.

36. Weaver JL, Zadrozny LM, Gabrielson K, Semple KM, Shea KI, Howard KE. BLT-
immune humanized mice as a model for nivolumab induced immune-mediated
adverse events: comparison of the NOG and NOG-EXL strains. Toxicol Sci.
2019:169:194–208.

37. Ito R, Takahashi T, Katano I, Kawai K, Kamisako T, Ogura T, Ida-Tanaka M,
Suemizu H, Nunomura S, Ra C, Mori A, Aiso S, Ito M. Establishment of a human
allergy model using human IL-3/GM-CSF-transgenic NOGmice. J Immunol.
2013;191:2890–2899.

38. Richmond A, Su Y. Mouse xenograft models vs GEMmodels for human cancer thera-
peutics. Dis Model Mech. 2008;1:78–82.

39. Li S, Shen D, Shao J, Crowder R, LiuW, Prat A, He X, Liu S, Hoog J, Lu C, Ding L,
Griffith OL, Miller C, Larson D, Fulton RS, Harrison M, Mooney T, McMichael JF, Luo
J, Tao Y, Goncalves R, Schlosberg C, Hiken JF, Saied L, Sanchez C, Giuntoli T,
Bumb C, Cooper C, Kitchens RT, Lin A, Phommaly C, Davies SR, Zhang J, Kavuri
MS, McEachern D, Dong YY, Ma C, Pluard T, Naughton M, Bose R, Suresh R,
McDowell R, Michel L, Aft R, GillandersW, DeSchryver K,Wilson RK,Wang S,
Mills GB, Gonzalez-Angulo A, Edwards JR, Maher C, Perou CM, Mardis ER, Ellis

MJ. Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization
of breast-cancer-derived xenografts. Cell Rep. 2013;4:1116–1130.

40. Kirsch DG. Using genetically engineered mice for radiation research. Radiat Res.
2011;176:275–279.

41. Lee CL, Moding EJ, Huang X, Li Y,Woodlief LZ, Rodrigues RC, Ma Y, Kirsch DG.
Generation of primary tumors with Flp recombinase in FRT-flanked p53 mice. Dis
ModMech. 2012;5:397–402.

42. Feil S, Valtcheva N, Feil R. Inducible Cre mice. MethodsMol Biol. 2009;530:343–
363.

43. Kirsch DG, Dinulescu DM, Miller JB, Grimm J, Santiago PM, Young NP, Nielsen GP,
Quade BJ, Chaber CJ, Schultz CP, Takeuchi O, Bronson RT, Crowley D, Korsmeyer
SJ, Yoon SS, Hornicek FJ,Weissleder R, Jacks T. A spatially and temporally restricted
mouse model of soft tissue sarcoma. Nat Med. 2007;13:992–997.

44. Day CP, Merlino G, Van Dyke T. Preclinical mouse cancer models: a maze of oppor-
tunities and challenges. Cell. 2015;163:39–53.

45. Kersten K, Visser KE, Miltenburg MH, Jonkers J. Genetically engineered mouse mod-
els in oncology research and cancer medicine. EMBOMol Med. 2017;9:137–
153.

46. Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, SunW, Huhn RD,
SongW, Li D, Sharp LL, Torigian DA, O'Dwyer PJ, Vonderheide RH. CD40 agonists
alter tumor stroma and show efficacy against pancreatic carcinoma in mice and
humans. Science. 2011;331:1612–1616.

47. Chen Z, Cheng K,Walton Z,Wang Y, Ebi H, Shimamura T, Liu Y, Tupper T,
Ouyang J, Li J, Gao P,WooMS, Xu C, Yanagita M, Altabef A,Wang S, Lee C,
Nakada Y, Peña CG, Sun Y, Franchetti Y, Yao C, Saur A, CameronMD, Nishino
M, Hayes DN,Wilkerson MD, Roberts PJ, Lee CB, Bardeesy N, Butaney M,
Chirieac LR, Costa DB, Jackman D, Sharpless NE, Castrillon DH, Demetri GD, Jänne
PA, Pandolfi PP, Cantley LC, Kung AL, Engelman JA,Wong K-K. A murine lung can-
cer co-clinical trial identifies genetic modifiers of therapeutic response. Nature.
2012;483:613–617.

48. Lee C-L, Mowery YM, Daniel AR, Zhang D, Sibley AB, Delaney JR,Wisdom AJ, Qin
X,Wang X, Caraballo I, Gresham J, Luo L, Van Mater D, Owzar K, Kirsch DG.
Mutational landscape in genetically engineered, carcinogen-induced, and radia-
tion-induced mouse sarcoma. JCI Insight. 2019;4. pii: 128698.

49. Nguyen TK, Morse SJ, Fleischman AG. Transduction-transplantation mouse model of
myeloproliferative neoplasm. J Vis Exp. 2016;22.

50. Mountz JM, Yankeelov TE, Rubin DL, Buatti JM, Erikson BJ, Fennessy FM, Gillies RJ,
HuangW, Jacobs MA, Kinahan PE, Laymon CM, Linden HM, Mankoff DA,
Schwartz LH, Shim H,Wahl RL. Letter to cancer center directors: progress in quantita-
tive imaging as a means to predict and/or measure tumor response in cancer ther-
apy trials. J Clin Oncol. 2014;32:2115–2116.

51. Yankeelov TE. The Quantitative Imaging Network: a decade of achievement.
Tomography. 2019;5:A8.

52. Clarke LP, Nordstrom RJ, Zhang H, Tandon P, Zhang Y, RedmondG, Farahani K,
Kelloff G, Henderson L, Shankar L, Deye J, Capala J, Jacobs P. The Quantitative
Imaging Network: NCI’s historical perspective and planned goals. Transl Oncol.
2014;7:1–4.

53. Nordstrom RJ. The Quantitative Imaging Network in precision medicine.
Tomography. 2016;2:239–241.

54. Tseng JR, Dandekar M, Subbarayan M, Cheng Z, Park JM, Louie S. Reproducibility
of 30 -deoxy-30 -(18)F-fluorothymidine microPET studies in tumor xenografts in mice. J
Nucl Med. 2005;46:1851–1857.

55. Dandekar M, Tseng JR, Gambhir SS. Reproducibility of 18F-FDG microPET studies in
mouse tumor xenografts. J Nucl Med. 2007;48:602–607.

56. Fueger BJ, Czernin J, Hildebrandt I, Tran C, Halpern BS, Stout D, Phelps ME,Weber
WA. Impact of animal handling on the results of 18F-FDG PET studies in mice. J Nucl
Med. 2006;47:999–1006.

57. Hartley CJ, Reddy AK, Madala S, Michael LH, EntmanML, Taffet GE. Effects of iso-
flurane on coronary blood flow velocity in young, old and ApoE(-�/�) mice meas-
ured by Doppler ultrasound. Ultrasound Med Biol. 2007;33:512–521.

58. Hildebrandt IJ, Su H,WeberWA. Anesthesia and other considerations for in vivo
imaging of small animals. ILAR J. 2008;49:17–26.

59. Kober F, Iltis I, Cozzone PJ, BernardM. Cine-MRI assessment of cardiac function in
mice anesthetized with ketamine/xylazine and isoflurane. MAGMA.
2004;17:157–161.

60. Kober F, Iltis I, Cozzone PJ, BernardM. Myocardial blood flow mapping in mice
using high-resolution spin labeling magnetic resonance imaging: influence of keta-
mine/xylazine and isoflurane anesthesia. Magn Reson Med. 2005;53:601–606.

61. Zhang H, Qiao H, Frank R, Eucker S, Lu M, Huang B, et al. Endothelial progenitor
cells mediated improvements in post-infarct left ventricular myocardial blood flow
estimated by spin label CMR. Circulation. 2010;122:A20415.

62. Kress GJ, Liao F, Dimitry J, CedenoMR, FitzGerald GA, Holtzman DM, Musiek ES.
Regulation of amyloid-b dynamics and pathology by the circadian clock. J Exp
Med. 2018;215:1059–1068.

63. Yang G, Chen L, Grant GR, Paschos G, SongW-L, Musiek ES, Lee V, McLoughlin
SC, Grosser T, Cotsarelis G, FitzGerald GA. Timing of expression of the core clock

Co-Clinical Imaging Resource Program

284 TOMOGRAPHY.ORG I VOLUME 6 NUMBER 3 I SEPTEMBER 2020



gene Bmal1 influences its effects on aging and survival. Sci Transl Med.
2016;8:324ra16.

64. Corrigan JK, Ramachandran D, He Y, Palmer C, JurczakMj, Li B, et al. A big-data
approach to understanding metabolic rate and response to obesity in laboratory
mice. bioRxiv. 2019:839076.

65. Hormuth DA, Sorace AG, Virostko J, Abramson RG, Bhujwalla ZM, Enriquez-Navas
P, Gillies R, Hazle JD, Mason RP, Quarles CC,Weis JA,Whisenant JG, Xu J,
Yankeelov TE. Translating preclinical MRI methods to clinical oncology. J Magn
Reson Imaging. 2019;50:1377–1392.

66. Sun Y, Reynolds HM, Parameswaran B,Wraith D, FinneganME,Williams S,
Haworth A. Multiparametric MRI and radiomics in prostate cancer: a review.
Australas Phys Eng Sci Med. 2019;42:3–25.

67. Luna A, Pahwa S, Bonini C, Alcala-Mata L,Wright KL, Gulani V. Multiparametric
MR Imaging in abdominal malignancies. Magn Reson Imaging Clin N Am.
2016;24:157–186.

68. Gurses B, Boge M, Altinmakas E, Balik E. Multiparametric MRI in rectal cancer.
Diagn Interv Radiol. 2019;25:175–182.

69. Wehrli F, Shaw D, Kneeland J. Biomedical Magnetic Resonance Imaging:
Principles, Methodology, and Applications. New York, NY: VCH Publishers; 1988.

70. Brown RW, Venkatesan R, Thompson MR, Haacke EM, Norman Cheng YC.
Magnetic Resonance Imaging: Physical Principles and Sequence Design. NY, New
York:Wiley; 1999.

71. Liang ZP. Principles of Magnetic Resonance Imaging: A Signal Processing
Perspective. IEEE Press; 2000.

72. Deshmane A, Gulani V, Griswold MA, Seiberlich N. Parallel MR imaging. J Magn
Reson Imaging. 2012;36:55–72.

73. WuO, KoroshetzWJ, Østergaard L, Buonanno FS, CopenWA, Gonzalez RG,
Rordorf G, Rosen BR, Schwamm LH,Weisskoff RM, Sorensen AG. Predicting tissue
outcome in acute human cerebral ischemia using combined diffusion- and perfusion-
weighted MR imaging. Stroke. 2001;32:933–942.

74. Porter DA, Heidemann RM. High resolution diffusion-weighted imaging using read-
out-segmented echo-planar imaging, parallel imaging and a two-dimensional navi-
gator-based reacquisition. Magn Reson Med. 2009;62:468–475.

75. Chavhan GB, Babyn PS, Jankharia BG, Cheng H-L, Shroff MM. Steady-state MR
imaging sequences: physics, classification, and clinical applications.
Radiographics. 2008;28:1147–1160.

76. Wiesmann F, Ruff J, Hiller K-H, Rommel E, Haase A, Neubauer S. Developmental
changes of cardiac function and mass assessed with MRI in neonatal, juvenile, and
adult mice. Am J Physiol Heart Circ Physiol. 2000;278:H652–657.

77. Zhou R, Pickup S, Glickson JD, Scott C, Ferrari VA. Assessment of global and re-
gional myocardial function in the mouse using cine- and taggedMRI. Magn Reson
Med. 2003;49:760–764.

78. Zhou R, Pickup S, Yankeelov TE, Springer CS, Jr., Glickson JD. Simultaneous mea-
surement of arterial input function and tumor pharmacokinetics in mice by dynamic
contrast enhanced imaging: effects of transcytolemmal water exchange. Magn
Reson Med. 2004;52:248–257.

79. Bishop J, Feintuch A, Bock NA, Nieman B, Dazai J, Davidson L, Henkelman RM.
Retrospective gating for mouse cardiac MRI. Magn ResonMed. 2006;55:472–
477.

80. Heijman E, de GraafW, Niessen P, Nauerth A, van Eys G, de Graaf L, Nicolay K,
Strijkers GJ. Comparison between prospective and retrospective triggering for
mouse cardiac MRI. NMR Biomed. 2007;20:439–447.

81. Sachs TS, Meyer CH, Hu BS, Kohli J, Nishimura DG, Macovski A. Real-time motion
detection in spiral MRI using navigators. Magn ResonMed. 1994;32:639–645.

82. KimWS,Mun CW, Kim DJ, Cho ZH. Extraction of cardiac and respiratory motion
cycles by use of projection data and its applications to NMR imaging. Magn Reson
Med. 1990;13:25–37.

83. Anderson AW, Gore JC. Analysis and correction of motion artifacts in diffusion
weighted imaging. Magn Reson Med. 1994;32:379–387.

84. Pipe JG. Motion correction with PROPELLER MRI: application to head motion and
free-breathing cardiac imaging. Magn ResonMed. 1999;42:963–969.

85. Larson AC,White RD, Laub G, McVeigh ER, Li D, Simonetti OP. Self-gated cardiac
cine MRI. Magn Reson Med. 2004;51:93–102.

86. Brau AC, Brittain JH. Generalized self-navigated motion detection technique: prelim-
inary investigation in abdominal imaging. Magn Reson Med. 2006;55:263–270.

87. Subashi E, Qi Y, Johnson GA. Dynamic contrast-enhanced MRmicroscopy identifies
regions of therapeutic response in a preclinical model of colorectal adenocarci-
noma. Med Phys. 2015;42:2482–2488.

88. Castets CR, Ribot EJ, LefrançoisW, Trotier AJ, Thiaudière E, Franconi J-M, Miraux S.
Fast and robust 3D T1 mapping using spiral encoding and steady RF excitation at 7
T: application to cardiac manganese enhanced MRI (MEMRI) in mice. NMR
Biomed. 2015;28:881–889.

89. Janiczek RL, Blackman BR, Roy RJ, Meyer CH, Acton ST, Epstein FH. Three-dimen-
sional phase contrast angiography of the mouse aortic arch using spiral MRI. Magn
Reson Med. 2011;66:1382–1390.

90. Malyarenko DI, Wilmes LJ, Arlinghaus LR, Jacobs MA, HuangW, Helmer KG,
Taouli B, Yankeelov TE, Newitt D, Chenevert TL. QIN DAWG validation of gradient

nonlinearity bias correction workflow for quantitative diffusion-weighted imaging in
multicenter trials. Tomography. 2016;2:396–405.

91. O’Callaghan C. Respiratory gated PET/CT in-house phantom design—a mission
statement. Eur J Nucl MedMol Imaging. 2011;38:S447.

92. Hubbard PL, Zhou FL, Eichhorn SJ, Parker G. Biomimetic phantom for the validation
of diffusion magnetic resonance imaging. Magn Reson Med. 2015;73:299–305.

93. Yoshimaru E, Totenhagen J, Alexander GE, Trouard TP. Design, manufacture, and
analysis of customized phantoms for enhanced quality control in small animal MRI
systems. Magn ResonMed. 2014;71:880–884.

94. Buzug TM. Computed tomography. In: Kramme R, Hoffmann KP, Pozos RS (eds),
Springer Handbook of Medical Technology. Berlin, Heidelberg: Springer;
2011:311–342.

95. Badea C, DrangovaM, Holdsworth D, Johnson G. In vivo small-animal imaging
using micro-CT and digital subtraction angiography. Phys Med Biol. 2008;53:
R319.

96. Faulkner K, Moores BM. Noise and contrast detection in computed tomography
images. Phys Med Biol. 1984;29:329–339.

97. Brooks RA, Di Chiro G. Statistical limitations in x-ray reconstructive tomography.
Med Phys. 1976;3:237–240.

98. Ford NL, Thornton MM, Holdsworth DW. Fundamental image quality limits for
microcomputed tomography in small animals. Med Phys. 2003;30:2869–2877.

99. KalenderW. Computed Tomography: Fundamentals, System Technology, Image
Quality, Applications. Munich, Germany: Publicis MCD Verlag; 2000.

100. Boone JM, Velazquez O, Cherry SR. Small-animal X-ray dose from micro-CT. Mol
Imaging. 2004;3:149–158.

101. Carlson SK, Classic KL, Bender CE, Russell SJ. Small animal absorbed radiation
dose from serial micro-computed tomography imaging. Mol Imaging Biol.
2007;9:78–82.

102. Ritman EL. Micro-computed tomography-current status and developments. Annu Rev
Biomed Eng. 2004;6:185–208.

103. Parkins CS, Fowler JF, Maughan RL, Roper MJ. Repair in mouse lung for up to 20
fractions of X rays or neutrons. Br J Radiol. 1985;58:225–241.

104. Ashton JR,West JL, Badea CT. In vivo small animal micro-CT using nanoparticle con-
trast agents. Front Pharmacol. 2015;6:256.

105. Blocker SJ, HolbrookMD, Mowery YM, Sullivan DC, Badea CT. The impact of respi-
ratory gating on improving volume measurement of murine lung tumors in micro-CT
imaging. PLoSOne. 2020;15:e0225019.

106. Clark DP, Badea CT. Micro-CT of rodents: state-of-the-art and future perspectives.
Phys Med. 2014;30:619–634.

107. Burk LM, Lee YZ,Wait JM, Lu J, Zhou OZ. Non-contact respiration monitoring for in-
vivo murine micro computed tomography: characterization and imaging applica-
tions. Phys Med Biol. 2012;57:5749–5763.

108. Badea CT, Hedlund LW, Johnson GA. Micro-CT with respiratory and cardiac gat-
ing. Med Phys. 2004;31:3324–3329.

109. Song J, Liu QH, Johnson GA, Badea CT. Sparseness prior based iterative image
reconstruction for retrospectively gated cardiac micro-CT. Med Phys.
2007;34:4476–4483.

110. Johnston SM, Perez BA, Kirsch DG, Badea CT. Phase-selective image reconstruction
of the lungs in small animals using Micro-CT. Proc SPIE Int Soc Opt Eng. 2010;7622

111. Lu L, Liang Y, Schwartz LH, Zhao B. Reliability of radiomic features across multiple
abdominal CT image acquisition settings: a pilot study using ACR CT phantom.
Tomography. 2019;5:226–231.

112. Du LY, Umoh J, Nikolov HN, Pollmann SI, Lee TY, Holdsworth DW. A quality assur-
ance phantom for the performance evaluation of volumetric micro-CT systems. Phys
Med Biol. 2007;52:7087–7108.

113. Bretin F,Warnock G, Luxen A, Plenevaux A, Seret A, Bahri MA. Performance evalu-
ation and x-ray dose quantification for various scanning protocols of the GE eXplore
120Micro-CT. IEEE Trans Nucl Sci. 2013;60:3235–3241.

114. Blocker SJ, Mowery YM, HolbrookMD, Qi Y, Kirsch DG, Johnson GA, Badea CT.
Bridging the translational gap: implementation of multimodal small animal imaging
strategies for tumor burden assessment in a co-clinical trial. PLoS One. 2019;14:
e0207555.

115. Waring CS, Bax JS, Samarabandu A, Holdsworth DW, Fenster A, Lacefield JC.
Traceable micro-CT scaling accuracy phantom for applications requiring exact mea-
surement of distances or volumes. Med Phys. 2012;39:6022–6027.

116. Zhang X, Tian J, Feng J, Zhu S, Yan G. An anatomical mouse model for multimodal
molecular imaging. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:5817–5820

117. Wang H, Stout DB, Chatziioannou AF. Estimation of mouse organ locations through
registration of a statistical mouse atlas with micro-CT images. IEEE Trans Med
Imaging. 2012;31:88–102.

118. SegarsWP, Tsui BMW, Frey EC, Johnson GA, Berr SS. Development of a 4-D digital
mouse phantom for molecular imaging research. Mol Imaging Biol. 2004;6:149–
159.

119. McDougaldW, Vanhove C, Lehnert A, Lewellen B,Wright J, Mingarelli M, Corral
CA, Schneider JE, Plein S, Newby DE,Welch A, Miyaoka R, Vandenberghe S,
Tavares AAS. Standardization of preclinical PET/CT imaging to improve

Co-Clinical Imaging Resource Program

TOMOGRAPHY.ORG I VOLUME 6 NUMBER 3 I SEPTEMBER 2020 285



quantitative accuracy, precision and reproducibility: a multi-center study. J Nucl
Med. 2020;61:461–468.

120. Mannheim JG, MamachM, Reder S, Traxl A, MuchaN, Disselhorst JA, Mittelhäuser
M, Kuntner C, Thackeray JT, Ziegler S,Wanek T, Bankstahl JP, Pichler BJ.
Reproducibility and comparability of preclinical PET imaging data: a multicenter
small-animal PET study. J Nucl Med. 2019;60:1483–1491.

121. MosesWW. Fundamental limits of spatial resolution in PET. Nucl InstrumMethods
Phys Res A. 2011;648:S236–S40.

122. Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of
projection data. IEEE Trans Med Imaging. 1994;13:601–609.

123. Lange K, Carson R. EM reconstruction algorithms for emission and transmission to-
mography. J Comput Assist Tomogr. 1984;8:306–316.

124. Panin VY, Kehren F, Michel C, CaseyM. Fully 3-D PET reconstruction with systemma-
trix derived from point source measurements. IEEE Trans Med Imaging.
2006;25:907–921.

125. Pan T, Einstein SA, Kappadath SC, Grogg KS, Lois Gomez C, Alessio AM, Hunter
WC, El Fakhri G, Kinahan PE, Mawlawi OR. Performance evaluation of the 5-Ring
GE Discovery MI PET/CT system using the national electrical manufacturers associa-
tion NU 2-2012 Standard. Med Phys. 2019;46:3025–3033.

126. van Sluis J, de Jong J, Schaar J, Noordzij W, van Snick P, Dierckx R, Borra R,
Willemsen A, Boellaard R. Performance characteristics of the digital biograph vision
PET/CT system. J Nucl Med. 2019;60:1031–1036.

127. Zhang J, Maniawski P, Knopp MV. Performance evaluation of the next generation
solid-state digital photon counting PET/CT system. EJNMMI Res. 2018;8:97.

128. KungMP, Kung HF. Mass effect of injected dose in small rodent imaging by SPECT
and PET. Nucl Med Biol. 2005;32:673–678.

129. MacFarlane CR, American College of Radiologists. ACR accreditation of nuclear
medicine and PET imaging departments. J Nucl Med Technol. 2006;34:18–24.

130. Byrd DW, Sunderland JJ, Lee TC, Kinahan PE. Bias in PET images of solid phantoms
due to CT-based attenuation correction. Tomography. 2019;5:154–160.

131. Daube-Witherspoon ME, Karp JS, Casey ME, DiFilippo FP, Hines H, Muehllehner G,
Simcic V, Stearns CW, Adam L-E, Kohlmyer S, Sossi V. PET performance measure-
ments using the NEMANU 2-2001 standard. J Nucl Med. 2002;43:1398–1409.

132. Boellaard R, Delgado-Bolton R, OyenWJG, Giammarile F, Tatsch K, EschnerW,
Verzijlbergen FJ, Barrington SF, Pike LC,WeberWA, Stroobants S, Delbeke D,
Donohoe KJ, Holbrook S, GrahamMM, Testanera G, Hoekstra OS, Zijlstra J, Visser
E, Hoekstra CJ, Pruim J,Willemsen A, Arends B, Kotzerke J, Bockisch A, Beyer T,
Chiti A, Krause BJ. FDG PET/CT: EANM procedure guidelines for tumour imaging:
version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328–354.

133. Sunderland JJ, Christian PE. Quantitative PET/CT scanner performance characteriza-
tion based upon the society of nuclear medicine and molecular imaging clinical trials
network oncology clinical simulator phantom. J Nucl Med. 2015;56:145–152.

134. Goertzen AL, Bao Q, Bergeron M, Blankemeyer E, Blinder S, Canadas M,
Chatziioannou AF, Dinelle K, Elhami E, Jans H-S, Lage E, Lecomte R, Sossi V, Surti S,
Tai Y-C, Vaquero JJ, Vicente E,Williams DA, Laforest R. NEMANU 4-2008 compar-
ison of preclinical PET imaging systems. J Nucl Med. 2012;53:1300–1309.

135. Clarke LP, Sriram RD, Schilling LB. Imaging as a Biomarker: standards for change
measurements in therapy workshop summary. Acad Radiol. 2008;15:501–530.

136. Prescott JW. Quantitative imaging biomarkers: the application of advanced image
processing and analysis to clinical and preclinical decision making. J Digit Imaging.
2013;26:97–108.

137. Lin LI. A concordance correlation coefficient to evaluate reproducibility. Biometrics.
1989;45:255–268.

138. Bland JM, Altman DG.Measuring agreement in method comparison studies. Stat
Methods Med Res. 1999;8:135–160.

139. Watson PF, Petrie A. Method agreement analysis: a review of correct methodology.
Theriogenology. 2010;73:1167–1179.

140. Galbraith SM, LodgeMA, Taylor NJ, Rustin GJS, Bentzen S, Stirling JJ, Padhani AR.
Reproducibility of dynamic contrast-enhancedMRI in human muscle and tumours:
comparison of quantitative and semi-quantitative analysis. NMR Biomed.
2002;15:132–142.

141. Raunig DL, McShane LM, Pennello G, Gatsonis C, Carson PL, Voyvodic JT,Wahl RL,
Kurland BF, Schwarz AJ, Gönen M, Zahlmann G, Kondratovich MV, O’Donnell K,
Petrick N, Cole PE, Garra B, Sullivan DC. Quantitative imaging biomarkers: a
review of statistical methods for technical performance assessment. Stat Methods
Med Res. 2015;24:27–67.

142. Obuchowski NA, Bullen J. Quantitative imaging biomarkers: effect of sample size
and bias on confidence interval coverage. Stat Methods Med Res. 2018;27:3139–
3150.

143. Shukla-Dave A, Obuchowski NA, Chenevert TL, Jambawalikar S, Schwartz LH,
Malyarenko D, HuangW, Noworolski SM, Young RJ, Shiroishi MS, Kim H, Coolens
C, Laue H, Chung C, Rosen M, Boss M, Jackson EF. Quantitative imaging bio-
markers alliance (QIBA) recommendations for improved precision of DWI and DCE-
MRI derived biomarkers in multicenter oncology trials. J Magn Reson Imaging.
2019;49:e101–e121.

144. Barnes SL,Whisenant JG, Loveless ME, Ayers GD, Yankeelov TE. Assessing the
reproducibility of dynamic contrast enhanced magnetic resonance imaging in a mu-
rine model of breast cancer. Magn Reson Med. 2013;69:1721–1734.

145. Ge X, Quirk JD, Engelbach JA, Bretthorst GL, Li S, Shoghi KI, Garbow JR, Ackerman
JJH. Test-retest performance of a 1-hour multiparametric MR image acquisition pipe-
line with orthotopic triple-negative breast cancer patient-derived tumor xenografts.
Tomography. 2019;5:320–331.

146. Savaikar MA,Whitehead T, Roy S, Strong L, Fettig N, Prmeau T, Luo J, Li S,Wahl
RL, Shoghi KI. SUV25 and mPERCIST: precision imaging of response to therapy in
co-clinical FDG-PET imaging of triple negative breast cancer (TNBC) patient-derived
tumor xenografts (PDX). J Nucl Med. 2019.

147. Whisenant JG, Ayers GD, Loveless ME, Barnes SL, Colvin DC, Yankeelov TE.
Assessing reproducibility of diffusion-weighted magnetic resonance imaging studies
in a murine model of HER2þ breast cancer. Magn Reson Imaging. 2014;32:245–
249.

148. Whisenant JG, Peterson TE, Fluckiger JU, Tantawy MN, Ayers GD, Yankeelov TE.
Reproducibility of static and dynamic (18)F-FDG, (18)F-FLT, and (18)F-FMISO
MicroPET studies in a murine model of HER2þ breast cancer. Mol Imaging Biol.
2013;15:87–96.

149. BaneO, Hectors SJ,Wagner M, Arlinghaus LL, Aryal MP, Cao Y, Chenevert TL,
Fennessy F, HuangW, Hylton NM, Kalpathy-Cramer J, Keenan KE, Malyarenko DI,
Mulkern RV, Newitt DC, Russek SE, Stupic KF, Tudorica A,Wilmes LJ, Yankeelov TE,
Yen YF, Boss MA, Taouli B. Accuracy, repeatability, and interplatform reproducibil-
ity of T1 quantification methods used for DCE-MRI: results from a multicenter phan-
tom study. Magn ResonMed. 2018;79:2564–2575.

150. Fraum TJ, Fowler KJ, Crandall JP, Laforest RA, Salter A, An H, Jacobs MA, Grigsby
PW, Dehdashti F,Wahl RL. Measurement repeatability of (18)F-FDG PET/CT versus
(18)F-FDG PET/MRI in solid tumors of the pelvis. J Nucl Med. 2019;60:1080–
1086.

151. LodgeMA. Repeatability of SUV in Oncologic (18)F-FDG PET. J Nucl Med.
2017;58:523–532.

152. Newitt DC, Zhang Z, Gibbs JE, Partridge SC, Chenevert TL, Rosen MA, Bolan PJ,
Marques HS, Aliu S, Li W, Cimino L, Joe BN, Umphrey H, Ojeda-Fournier H, Dogan
B, Oh K, Abe H, Drukteinis J, Esserman LJ, Hylton NM. Test-retest repeatability and
reproducibility of ADC measures by breast DWI: results from the ACRIN 6698 trial.
J Magn Reson Imaging. 2019;49:1617–1628.

153. Sorace AG,WuC, Barnes Sl, Jarrett Am, Avery S, Patt D, Goodgame B, Luci JJ,
Kang H, Abramson RG, Yankeelov TE, Virostko J. Repeatability, reproducibility, and
accuracy of quantitative mri of the breast in the community radiology setting. J Magn
Reson Imaging. 2018.

154. Abramson RG, Burton KR, Yu J-PJ, Scalzetti EM, Yankeelov TE, Rosenkrantz AB,
Mendiratta-Lala M, Bartholmai BJ, Ganeshan D, Lenchik L, Subramaniam RM.
Methods and challenges in quantitative imaging biomarker development. Acad
Radiol. 2015;22:25–32.

155. Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, Forster K, Aerts
HJWL, Dekker A, Fenstermacher D, Goldgof DB, Hall LO, Lambin P, Balagurunathan
Y, Gatenby RA, Gillies RJ. Radiomics: the process and the challenges. Magn Reson
Imaging. 2012;30:1234–1248.

156. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they
are data. Radiology. 2016;278:563–577.

157. Aerts HJWL, Velazquez ER, Leijenaar RTH, Parmar C, Grossmann P, Carvalho S,
Bussink J, Monshouwer R, Haibe-Kains B, Rietveld D, Hoebers F, Rietbergen MM,
Leemans CR, Dekker A, Quackenbush J, Gillies RJ, Lambin P. Decoding tumour phe-
notype by noninvasive imaging using a quantitative radiomics approach. Nat
Commun. 2014;5:4006.

158. Grossmann P, Gutman DA, DunnWD, Jr., Holder CA, Aerts HJ. Imaging-genomics
reveals driving pathways of MRI derived volumetric tumor phenotype features in glio-
blastoma. BMC Cancer. 2016;16:611.

159. Kotrotsou A, Zinn PO, Colen RR. Radiomics in brain tumors: an emerging technique
for characterization of tumor environment. Magn Reson Imaging Clin N Am.
2016;24:719–729.

160. Sala E, Mema E, Himoto Y, Veeraraghavan H, Brenton JD, Snyder A,Weigelt B,
Vargas HA. Unravelling tumour heterogeneity using next-generation imaging: radio-
mics, radiogenomics, and habitat imaging. Clin Radiol. 2017;72:3–10.

161. Zinn PO, Singh SK, Kotrotsou A, Hassan I, Thomas G, Luedi MM, Elakkad A,
Elshafeey N, Idris T, Mosley J, Gumin J, Fuller GN, de Groot JF,
Baladandayuthapani V, Sulman EP, Kumar AJ, Sawaya R, Lang FF, Piwnica-Worms
D, Colen RR. A co-clinical radiogenomic validation study - Conserved magnetic reso-
nance radiomic appearance of Periostin expressing Glioblastoma in patients and
xenograft models. Clin Cancer Res. 2018;24.

162. Permuth JB, Choi J, Balarunathan Y, Kim J, Chen DT, Chen L, Orcutt S, Doepker MP,
Gage K, Zhang G, Latifi K, Hoffe S, Jiang K, Coppola D, Centeno BA, Magliocco A,
Li Q, Trevino J, Merchant N, Gillies R, Malafa M, Collaborative O. B O T F P.
Combining radiomic features with a miRNA classifier may improve prediction of ma-
lignant pathology for pancreatic intraductal papillary mucinous neoplasms.
Oncotarget. 2016;7:85785–85797.

Co-Clinical Imaging Resource Program

286 TOMOGRAPHY.ORG I VOLUME 6 NUMBER 3 I SEPTEMBER 2020



163. Katsila T, Matsoukas MT, Patrinos GP, Kardamakis D. Pharmacometabolomics
Informs Quantitative Radiomics for Glioblastoma Diagnostic Innovation. OMICS.
2017;21:429–439.

164. Kickingereder P, Neuberger U, Bonekamp D, Piechotta PL, Gotz M,Wick A, Sill M,
Kratz A, Shinohara RT, Jones DTW, Radbruch A, Muschelli J, Unterberg A, Debus J,
Schlemmer HP, Herold-Mende C, Pfister S, von Deimling A,WickW, Capper D,
Maier-Hein KH, Bendszus M. Radiomic subtyping improves disease stratification

beyond key molecular, clinical and standard imaging characteristics in patients with
glioblastoma. Neuro Oncol. 2018;20:848–857.

165. LeeG, Lee HY, Park H, SchieblerML, van Beek EJR, Ohno Y, Seo JB, Leung A.
Radiomics and its emerging role in lung cancer research, imaging biomarkers and clini-
cal management: state of the art. Eur J Radiol. 2017;86:297–307.

166. Samsa G, Samsa L. A guide to reproducibility in preclinical research. AcadMed.
2019;94:47–52.

Co-Clinical Imaging Resource Program

TOMOGRAPHY.ORG I VOLUME 6 NUMBER 3 I SEPTEMBER 2020 287


	Co-Clinical Imaging Resource Program (CIRP): Bridging the translational divide to advance precision medicine
	GP-TOMJ200033 273..287

