11 research outputs found
GloPID-R report on chikungunya, o'nyong-nyong and Mayaro virus, part 2: Epidemiological distribution of o'nyong-nyong virus
The GloPID-R (Global Research Collaboration for Infectious Disease Preparedness) chikungunya (CHIKV), o'nyong-nyong (ONNV) and Mayaro virus (MAYV) Working Group has been established to identify gaps of knowledge about the natural history, epidemiology and medical management of infection by these viruses, and to provide adapted recommendations for future investigations. Here, we present a report dedicated to ONNV epidemiological distribution. Two large-scale ONNV outbreaks have been identified in Africa in the last 60 years, interspersed with sporadic serosurveys and case reports of returning travelers. The assessment of the real scale of ONNV circulation in Africa remains a difficult task and surveillance studies are necessary to fill this gap. The identification of ONNV etiology is made complicated by the absence of multiplex tools in co-circulati
GloPID-R report on chikungunya, o'nyong-nyong and Mayaro virus, part 5: entomological aspects
The GloPID-R (Global Research Collaboration for Infectious Disease Preparedness) chikungunya (CHIKV), o’nyong-nyong (ONNV) and Mayaro virus (MAYV) Working Group has been established to investigate natural history, epidemiology and clinical aspects of infection by these viruses. Here, we present a report dedicated to entomological aspects of CHIKV, ONNV and MAYV. Recent global expansion of chikungunya virus has been possible because CHIKV established a transmission cycle in urban settings using anthropophilic vectors such as Aedes albopictus and Aedes aegypti. MAYV and ONNV have a more limited geographic distribution, being confined to Africa (ONNV) and central-southern America (MAYV). ONNV is probably maintained through an enzootic cycle that has not been characterized yet, with Anopheles species as main vectors and humans as amplification hosts during epidemics. MAYV is transmitted by Haemagogus species in an enzootic cycle using non-human primates as the main amplification and maintenance hosts, and humans becoming sporadically infected when venturing in or nearby forest habitats. Here, we focused on the transmission cycle and natural vectors that sustain circulation of these viruses in their respective locations. The knowledge of the natural ecology of transmission and the capacity of different vectors to transmit these viruses is crucial to understand CHIKV emergence, and to assess the risk that MAYV and ONNV will expand on wide scale using anthropophilic mosquito species not normally considered primary vectors. Finally, the experts identified knowledge gaps and provided adapted recommendations, in order to address future entomological investigations in the right direction
Strengthening the interaction of the virology community with the International Committee on Taxonomy of Viruses (ICTV) by linking virus names and their abbreviations to virus species
The International Committee on Taxonomy of Viruses (ICTV) is tasked with classifying viruses into taxa (phyla to species) and devising taxon names. Virus names and virus name abbreviations are currently not within the ICTV’s official remit and are not regulated by an official entity. Many scientists, medical/veterinary professionals, and regulatory agencies do not address evolutionary questions nor are they concerned with the hierarchical organization of the viral world, and therefore, have limited use for ICTV-devised taxa. Instead, these professionals look to the ICTV as an expert point source that provides the most current taxonomic affiliations of viruses of interests to facilitate document writing. These needs are currently unmet as an ICTV-supported, easily searchable database that includes all published virus names and abbreviations linked to their taxa is not available. In addition, in stark contrast to other biological taxonomic frameworks, virus taxonomy currently permits individual species to have several members. Consequently, confusion emerges among those who are not aware of the difference between taxa and viruses, and because certain well-known viruses cannot be located in ICTV publications or be linked to their species. In addition, the number of duplicate names and abbreviations has increased dramatically in the literature. To solve this conundrum, the ICTV could mandate listing all viruses of established species and all reported unclassified viruses in forthcoming online ICTV Reports and create a searchable webpage using this information. The International Union of Microbiology Societies could also consider changing the mandate of the ICTV to include the nomenclature of all viruses in addition to taxon considerations. With such a mandate expansion, official virus names and virus name abbreviations could be catalogued and virus nomenclature could be standardized. As a result, the ICTV would become an even more useful resource for all stakeholders in virology
GloPID-R report on chikungunya, o'nyong-nyong and Mayaro virus, part 5: Entomological aspects
International audiencePreparedness) chikungunya (CHIKV), o'nyong-nyong (ONNV) and Mayaro virus (MAYV) Working Group has been established to investigate natural history, epidemiology and clinical aspects of infection by these viruses. Here, we present a report dedicated to entomological aspects of CHIKV, ONNV and MAYV. Recent global expansion of chikungunya virus has been possible because CHIKV established a transmission cycle in urban settings using anthropophilic vectors such as Aedes albopictus and Aedes aegypti. MAYV and ONNV have a more limited geographic distribution, being confined to Africa (ONNV) and central-southern America (MAYV). ONNV is probably maintained through an enzootic cycle that has not been characterized yet, with Anopheles species as main vectors and humans as amplification hosts during epidemics. MAYV is transmitted by Haemagogus species in an enzootic cycle using non-human primates as the main amplification and maintenance hosts, and humans becoming sporadically infected when venturing in or nearby forest habitats. Here, we focused on the transmission cycle and natural vectors that sustain circulation of these viruses in their respective locations. The knowledge of the natural ecology of transmission and the capacity of different vectors to transmit these viruses is crucial to understand CHIKV emergence, and to assess the risk that MAYV and ONNV will expand on wide scale using anthropophilic mosquito species not normally considered primary vectors. Finally, the experts identified knowledge gaps and provided adapted recommendations, in order to address future entomological investigations in the right direction
Climate change and global health: A call to more research and more action.
There is increasing understanding, globally, that climate change and increased pollution will have a profound and mostly harmful effect on human health. This review brings together international experts to describe both the direct (such as heat waves) and indirect (such as vector-borne disease incidence) health impacts of climate change. These impacts vary depending on vulnerability (i.e., existing diseases) and the international, economic, political, and environmental context. This unique review also expands on these issues to address a third category of potential longer-term impacts on global health: famine, population dislocation, and environmental justice and education. This scholarly resource explores these issues fully, linking them to global health in urban and rural settings in developed and developing countries. The review finishes with a practical discussion of action that health professionals around the world in our field can yet take
GloPID-R report on chikungunya, o'nyong-nyong and Mayaro virus, part 2: Epidemiological distribution of o'nyong-nyong virus
International audienceThe GloPID-R (Global Research Collaboration for Infectious Disease Preparedness) chikungunya (CHIKV), o'nyong-nyong (ONNV) and Mayaro virus (MAYV) Working Group has been established to identify gaps of knowledge about the natural history, epidemiology and medical management of infection by these viruses, and to provide adapted recommendations for future investigations. Here, we present a report dedicated to ONNV epidemiological distribution. Two large-scale ONNV outbreaks have been identified in Africa in the last 60 years, interspersed with sporadic serosurveys and case reports of returning travelers. The assessment of the real scale of ONNV circulation in Africa remains a difficult task and surveillance studies are necessary to fill this gap. The identification of ONNV etiology is made complicated by the absence of multiplex tools in co-circulation areas and that of reference standards, as well as the high cross-reactivity with related pathogens observed in serological tests, in particular with CHIKV. This is a specific obstacle for seroprevalence studies, that necessitate an improvement of serological tools to provide robust results. The scarcity of existent genetic data currently limits molecular epidemiology studies. ONNV epidemiology would also benefit from reinforced entomological and environmental surveillance. Finally, the natural history of the disease deserves to be further investigated, with a specific attention paid to long-term complications. Considering our incomplete knowledge on ONNV distribution, GloPID-R CHIKV, ONNV and MAYV experts recommend that a major effort should be done to fill existing gaps