24,483 research outputs found
Del Pezzo surfaces with 1/3(1,1) points
We classify del Pezzo surfaces with 1/3(1,1) points in 29 qG-deformation
families grouped into six unprojection cascades (this overlaps with work of
Fujita and Yasutake), we tabulate their biregular invariants, we give good
model constructions for surfaces in all families as degeneracy loci in rep
quotient varieties and we prove that precisely 26 families admit
qG-degenerations to toric surfaces. This work is part of a program to study
mirror symmetry for orbifold del Pezzo surfaces.Comment: 42 pages. v2: model construction added of last remaining surface,
minor corrections, minor changes to presentation, references adde
Preliminary results using a P300 brain-computer interface speller: a possible interaction effect between presentation paradigm and set of stimuli
Fernández-Rodríguez Á., Medina-Juliá M.T., Velasco-Álvarez F., Ron-Angevin R. (2019) Preliminary Results Using a P300 Brain-Computer Interface Speller: A Possible Interaction Effect Between Presentation Paradigm and Set of Stimuli. In: Rojas I., Joya G., Catala A. (eds) Advances in Computational Intelligence. IWANN 2019. Lecture Notes in Computer Science, vol 11506. Springer, ChamSeveral proposals to improve the performance controlling a P300-based BCI speller have been studied using the standard row-column presentation (RCP) par-adigm. However, this paradigm could not be suitable for those patients with lack of gaze control. To solve that, the rapid serial visual presentation (RSVP) para-digm, which presents the stimuli located in the same position, has been proposed in previous studies. Thus, the aim of the present work is to assess if a stimuli set of pictures that improves the performance in RCP, could also improve the per-formance in a RSVP paradigm. Six participants have controlled four conditions in a calibration task: letters in RCP, pictures in RCP, letters in RSVP and pictures in RSVP. The results showed that pictures in RCP obtained the best accuracy and information transfer rate. The improvement effect given by pictures was greater in the RCP paradigm than in RSVP. Therefore, the improvements reached under RCP may not be directly transferred to the RSVP.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
Magnetic Properties of Ab initio Model for Iron-Based Superconductors LaFeAsO
By using variational Monte Carlo method, we examine an effective low-energy
model for LaFeAsO derived from an ab initio downfolding scheme. We show that
quantum and many-body fluctuations near a quantum critical point largely reduce
the antiferromagnetic (AF) ordered moment and the model not only quantitatively
reproduces the small ordered moment in LaFeAsO, but also explains the diverse
dependence on LaFePO, BaFe2As2 and FeTe. We also find that LaFeAsO is under
large orbital fluctuations, sandwiched by the AF Mott insulator and weakly
correlated metals. The orbital fluctuations and Dirac-cone dispersion hold keys
for the diverse magnetic properties.Comment: 4 pages, 4 figure
Survivin as a therapeutic target in Sonic hedgehog-driven medulloblastoma.
Medulloblastoma (MB) is a highly malignant brain tumor that occurs primarily in children. Although surgery, radiation and high-dose chemotherapy have led to increased survival, many MB patients still die from their disease, and patients who survive suffer severe long-term side effects as a consequence of treatment. Thus, more effective and less toxic therapies for MB are critically important. Development of such therapies depends in part on identification of genes that are necessary for growth and survival of tumor cells. Survivin is an inhibitor of apoptosis protein that regulates cell cycle progression and resistance to apoptosis, is frequently expressed in human MB and when expressed at high levels predicts poor clinical outcome. Therefore, we hypothesized that Survivin may have a critical role in growth and survival of MB cells and that targeting it may enhance MB therapy. Here we show that Survivin is overexpressed in tumors from patched (Ptch) mutant mice, a model of Sonic hedgehog (SHH)-driven MB. Genetic deletion of survivin in Ptch mutant tumor cells significantly inhibits proliferation and causes cell cycle arrest. Treatment with small-molecule antagonists of Survivin impairs proliferation and survival of both murine and human MB cells. Finally, Survivin antagonists impede growth of MB cells in vivo. These studies highlight the importance of Survivin in SHH-driven MB, and suggest that it may represent a novel therapeutic target in patients with this disease
Understanding light quanta: First quantization of the free electromagnetic field
The quantization of the electromagnetic field in vacuum is presented without
reference to lagrangean quantum field theory. The equal time commutators of the
fields are calculated from basic principles. A physical discussion of the
commutators suggest that the electromagnetic fields are macroscopic emergent
properties of more fundamental physical system: the photons
Structural and magnetic phase diagram of CeFeAsO1-xFx and its relationship to high-temperature superconductivity
We use neutron scattering to study the structural and magnetic phase
transitions in the iron pnictides CeFeAsO1-xFx as the system is tuned from a
semimetal to a high-transition-temperature (high-Tc) superconductor through
Fluorine (F) doping x. In the undoped state, CeFeAsO develops a structural
lattice distortion followed by a stripe like commensurate antiferromagnetic
order with decreasing temperature. With increasing Fluorine doping, the
structural phase transition decreases gradually while the antiferromagnetic
order is suppressed before the appearance of superconductivity, resulting an
electronic phase diagram remarkably similar to that of the high-Tc copper
oxides. Comparison of the structural evolution of CeFeAsO1-xFx with other
Fe-based superconductors reveals that the effective electronic band width
decreases systematically for materials with higher Tc. The results suggest that
electron correlation effects are important for the mechanism of high-Tc
superconductivity in these Fe pnictides.Comment: 19 pages, 5 figure
A Dynamic Programming Approach to Adaptive Fractionation
We conduct a theoretical study of various solution methods for the adaptive
fractionation problem. The two messages of this paper are: (i) dynamic
programming (DP) is a useful framework for adaptive radiation therapy,
particularly adaptive fractionation, because it allows us to assess how close
to optimal different methods are, and (ii) heuristic methods proposed in this
paper are near-optimal, and therefore, can be used to evaluate the best
possible benefit of using an adaptive fraction size.
The essence of adaptive fractionation is to increase the fraction size when
the tumor and organ-at-risk (OAR) are far apart (a "favorable" anatomy) and to
decrease the fraction size when they are close together. Given that a fixed
prescribed dose must be delivered to the tumor over the course of the
treatment, such an approach results in a lower cumulative dose to the OAR when
compared to that resulting from standard fractionation. We first establish a
benchmark by using the DP algorithm to solve the problem exactly. In this case,
we characterize the structure of an optimal policy, which provides guidance for
our choice of heuristics. We develop two intuitive, numerically near-optimal
heuristic policies, which could be used for more complex, high-dimensional
problems. Furthermore, one of the heuristics requires only a statistic of the
motion probability distribution, making it a reasonable method for use in a
realistic setting. Numerically, we find that the amount of decrease in dose to
the OAR can vary significantly (5 - 85%) depending on the amount of motion in
the anatomy, the number of fractions, and the range of fraction sizes allowed.
In general, the decrease in dose to the OAR is more pronounced when: (i) we
have a high probability of large tumor-OAR distances, (ii) we use many
fractions (as in a hyper-fractionated setting), and (iii) we allow large daily
fraction size deviations.Comment: 17 pages, 4 figures, 1 tabl
Effect of Fermi Surface Topology on Inter-Layer Magnetoresistance in Layered Multiband Systems: Application to LaFeAsO1-xFx
In layered single band systems, the interlayer conductivity depends on the
orientation of the in-plane magnetic field and takes maximum values when the
magnetic field is perpendicular to flat regions of the Fermi surface. Extending
this known results to multi-band systems, we propose an experiment to extract
information about their Fermi surface topology. We discuss application of the
formula to a FeAs-based superconductor, LaFeAsOF. We show that the
magnetically ordered state in the parent compound is clearly distinguished from
the paramagnetic state by the oscillation period in the interlayer
conductivity. We demonstrate that evolution of the Fermi surface topology by
changing the doping concentration is reflected to the interlayer conductivity
oscillation patterns.Comment: 12 pages, 6 figures, corrected Fig.6, added clarifications and refs,
to appear in J. Phys. Soc. Jp
Strong-coupling Spin-singlet Superconductivity with Multiple Full Gaps in Hole-doped BaKFeAs Probed by Fe-NMR
We present Fe-NMR measurements of the novel normal and
superconducting-state characteristics of the iron-arsenide superconductor
BaKFeAs ( = 38 K). In the normal state, the
measured Knight shift and nuclear spin-lattice relaxation rate
demonstrate the development of wave-number ()-dependent spin fluctuations,
except at = 0, which may originate from the nesting across the disconnected
Fermi surfaces. In the superconducting state, the spin component in the
Fe-Knight shift decreases to almost zero at low temperatures, evidencing
a spin-singlet superconducting state. The Fe- results are totally
consistent with a -wave model with multiple full gaps, regardless of
doping with either electrons or holes.Comment: 4 pages, 4 figures, 1 tabl
- …