3,183 research outputs found

    Cyclative cleavage via solid-phase supported stabilized sulfur ylides: synthesis of macrocyclic lactones

    Get PDF
    A new synthesis of macrolactones bearing a cyclopropyl ring condensed to the macrocycle is reported via a cyclization-release strategy making use of solid-phase supported stabilized sulfur ylides

    Lagrangian Statistics and Temporal Intermittency in a Shell Model of Turbulence

    Get PDF
    We study the statistics of single particle Lagrangian velocity in a shell model of turbulence. We show that the small scale velocity fluctuations are intermittent, with scaling exponents connected to the Eulerian structure function scaling exponents. The observed reduced scaling range is interpreted as a manifestation of the intermediate dissipative range, as it disappears in a Gaussian model of turbulence.Comment: 4 pages, 5 figure

    Relative dispersion in fully developed turbulence: The Richardson's Law and Intermittency Corrections

    Full text link
    Relative dispersion in fully developed turbulence is investigated by means of direct numerical simulations. Lagrangian statistics is found to be compatible with Richardson description although small systematic deviations are found. The value of the Richardson constant is estimated as C20.55C_2 \simeq 0.55, in a close agreement with recent experimental findings [S. Ott and J. Mann J. Fluid Mech. {\bf 422}, 207 (2000)]. By means of exit-time statistics it is shown that the deviations from Richardson's law are a consequence of Eulerian intermittency. The measured Lagrangian scaling exponents require a set of Eulerian structure function exponents ζp\zeta_{p} which are remarkably close to standard ones known for fully developed turbulence

    Fully developed turbulence and the multifractal conjecture

    Full text link
    We review the Parisi-Frisch MultiFractal formalism for Navier--Stokes turbulence with particular emphasis on the issue of statistical fluctuations of the dissipative scale. We do it for both Eulerian and Lagrangian Turbulence. We also show new results concerning the application of the formalism to the case of Shell Models for turbulence. The latter case will allow us to discuss the issue of Reynolds number dependence and the role played by vorticity and vortex filaments in real turbulent flows.Comment: Special Issue dedicated to E. Brezin and G. Paris

    Comprehensive Model for Physical and Cognitive Frailty: Current Organization and Unmet Needs

    Get PDF
    Aging is characterized by the decline and deterioration of functional cells and results in a wide variety of molecular damages and reduced physical and mental capacity. The knowledge on aging process is important because life expectancy is expected to rise until 2050. Aging cannot be considered a homogeneous process and includes different trajectories characterized by states of fitness, frailty, and disability. Frailty is a dynamic condition put between a normal functional state and disability, with reduced capacity to cope with stressors. This geriatric syndrome affects physical, neuropsychological, and social domains and is driven by emotional and spiritual components. Sarcopenia is considered one of the determinants and the biological substrates of physical frailty. Physical and cognitive frailty are separately approached during daily clinical practice. The concept of motoric cognitive syndrome has partially changed this scenario, opening interesting windows toward future approaches. Thus, the purpose of this manuscript is to provide an excursus on current clinical practice, enforced by aneddoctical cases. The analysis of the current state of the art seems to support the urgent need of comprehensive organizational model incorporating physical and cognitive spheres in the same umbrella

    Acceleration and vortex filaments in turbulence

    Full text link
    We report recent results from a high resolution numerical study of fluid particles transported by a fully developed turbulent flow. Single particle trajectories were followed for a time range spanning more than three decades, from less than a tenth of the Kolmogorov time-scale up to one large-eddy turnover time. We present some results concerning acceleration statistics and the statistics of trapping by vortex filaments.Comment: 10 pages, 5 figure

    Head and neck region consolidation radiotherapy and prophylactic cranial irradiation with hippocampal avoidance delivered with helical tomotherapy after induction chemotherapy for non-sinonasal neuroendocrine carcinoma of the upper airways

    Get PDF
    Background: Non-sinonasal neuroendocrine carcinomas (NSNECs) of the head and neck are considered an unfrequent clinico-pathological entity. Combined modality treatment represents an established therapeutic option for undifferentiated forms where distant metastasis is a common pattern of failure.Methods: We report on a case of NSNEC treated with sequential chemo-radiation consisting of 6 cycles of cisplatin and etoposide followed by loco-regional radiation to the head and neck and simultaneous prophylactic cranial irradiation to prevent from intracranial spread, delivered with helical tomotherapy with the 'hippocampal avoidance' technique in order to reduce neuro-cognitive late effects.Results: One year after the end of the whole combined modality approach, the patient achieved complete remission, with no treatment-related sub-acute and late effects.Conclusions: The present report highlights the importance of multidisciplinary management for NSNECs of the head and neck, as the possibility to achieve substantial cure rates with mild side effects with modern radiotherapy techniques. © 2012 Franco et al; BioMed Central Ltd

    Quantum non-demolition (QND) modulation of quantum interference

    Get PDF
    We propose an experiment where quantum interference between two different paths is modulated by means of a QND measurement on one or both the arm of the interferometer. The QND measurement is achieved in a Kerr cell. We illustrate a scheme for the realisation of this experiment and some further developments.Comment: accepted for publicatio

    Metamaterial architecture from a self-shaping carnivorous plant

    Get PDF
    As meticulously observed and recorded by Darwin, the leaves of the carnivorous plant Drosera capensis L. slowly fold around insects trapped on their sticky surface in order to ensure their digestion. While the biochemical signaling driving leaf closure has been associated with plant growth hormones, how mechanical forces actuate the process is still unknown. Here, we combine experimental tests of leaf mechanics with quantitative measurements of the leaf microstructure and biochemistry to demonstrate that the closure mechanism is programmed into the cellular architecture of D. capensis leaves, which converts a homogeneous biochemical signal into an asymmetric response. Inspired by the leaf closure mechanism, we devise and test a mechanical metamaterial, which curls under homogeneous mechanical stimuli. This kind of metamaterial could find possible applications as a component in soft robotics and provides an example of bio-inspired design
    corecore