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Abstract—A new synthesis of macrolactones bearing a cyclopropyl ring condensed to the macrocycle is reported via a
cyclization-release strategy making use of solid-phase supported stabilized sulfur ylides. © 2002 Elsevier Science Ltd. All rights
reserved.

The convenient purification procedures and the other
known advantages associated with solid-phase synthesis
make it a powerful tool for the preparation of combina-
torial libraries, a fundamental element of contemporary
drug discovery processes. In this context, cyclization-
release techniques1 present distinct advantages over
more conventional approaches to solid-phase synthesis:

(a) Most traditional solid-phase methods incorporate a
heteroatom within a device that links the substrate to

the polymer support. Cleavage is achieved by ‘depro-
tecting’ the heteroatom which, however, remains as a
vestigial stub on the final molecule. This is not a
problem in cyclative-cleavage approaches, where release
from the polymer support is obtained as a consequence
of the natural reactivity of the connecting functionality,
leaving no traces on the target molecules.

(b) Since detachment from the resin is a step associated
with the correct reaction sequence, only substrates

Figure 1. Synthesis of macrocyclic lactones via the cyclative release strategy, using solid-phase supported stabilized sulfur ylides.
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which possess the correct functionality and react in the
expected way are released into the solution in high
purity, leaving all unreacted systems and by-products
on the solid-phase.

(c) The cyclization step takes place while the substrate
is anchored on the polymer support, taking advantage
of the functional group isolation granted by the resin
and thus eliminating the risk of intermolecular reac-
tions and the need of high dilution conditions. The ring
closing metathesis (RCM),1 the Wittig–Horner reac-
tion,2 the Stille3 and Suzuki4 couplings have recently
been adapted to fit this scheme as carbon�carbon bond
forming cyclization processes in a cyclorelease from the
solid-phase.

We recognized in sulfur ylides5 a functional arrange-
ment with suitable characteristics for an original
cyclorelease strategy, featuring an activation phase
prior to the actual cyclization event, in a way reminis-
cent of the principle of safety catch linkers. In particu-
lar, we focused on sulfur ylides stabilized by
electron-withdrawing groups,6,7 which can be generated
under extremely mild conditions8 and are therefore
suitable for intramolecular reactions. Following the
anchoring of the ylide precursor onto the solid support
and elongation with a chain containing a Michael
acceptor terminal moiety (Fig. 1), the cyclative release

from the solid-phase is made possible by alkylation of
the sulfur atom to the sulfonium salt, the immediate
precursor to ylide formation and reaction.

Here we describe the application of this new cycliza-
tion-release strategy to the synthesis of macrolactones
bearing a cyclopropyl system condensed to the macro-
cyclic ring.9

First of all, we investigated the preparation of resin-
bound thioglycolic acid on Argogel® resin, the stability
of the resin-bound sulfonium salt and the reactivity of
the resin-bound ylide with aldehydes.6 Argogel®-Cl
resin was reacted with potassium thioacetate according
to a published procedure,10 and the supported thioester
1 was successfully reduced with LiBH4 in THF to give
Argogel®-SH resin 2, which was characterized by
MAS–1H NMR and FT-IR (Scheme 1). Argogel®-SH
resin 2 was then reacted with 13C-enriched (99%) ethyl
bromoacetate and triethylamine in DMF at room tem-
perature. The supported ester 3 was characterized by
13C-gel phase NMR (32.0 ppm) and FT-IR (�C�O,
1730 cm−1). The ethyl ester was then saponified (NaOH,
THF–H2O), and the resulting acid 4 was characterized
by MAS–1H NMR, FT-IR (�C�O 1720 cm−1), 13C-gel
phase NMR (34.6 ppm) and transformed into the N-
benzyl,N-methylamide 5 characterized by MAS–1H
NMR, FT-IR (�C�O 1636 cm−1) and 13C-gel phase

Scheme 1. Investigation on the stability of the resin-bound sulfonium salt 6 and on the reactivity of the resin-bound ylide with
aldehydes.
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NMR (33.9 ppm). Sulfonium salt 6 was synthesized by
treatment of sulfide 5 with 0.3 M MeOTf in DCM
(room temperature, 1 h). The solid-supported sulfo-
nium salt 6 was shown to be stable to washings and
storage, and characterized by MAS–1H NMR, FT-IR
(�C�O 1646 cm−1) and 13C-gel phase NMR (48.5 ppm).
Finally, it was reacted with DBU and protected
glyceraldehyde6 in CD2Cl2 at room temperature: the
reaction was followed by 13C NMR in the gel phase-
NMR tube (coaxial insert), by disappearance of the
sulfonium–carbon peak at 48.5 ppm and appearance of
the new epoxide–carbon peak at 52.4/52.7 ppm (two
peaks because of the tertiary amide present in 7). The
same reaction was run successfully on a preparative
scale employing different aldehydes (p-chlorobenzalde-
hyde, propionaldehyde and protected glyceraldehyde)
and solvents (DCM and CH3CN), as reported in
Scheme 1. Flash-chromatography of the crudes deriving
from the washings of the resin allowed the isolation and
characterization of the desired epoxyamides 7 (41%),
(±)-8 (10%), and (±)-9 (20%).6 Overall yields were calcu-
lated based on the initial loading of Argogel®-Cl resin
(0.44 mmol/g).

Having established the stability of the resin-bound sul-
fonium salt and the reactivity of the resin-bound ylide,
we turned our attention to the preparation of two

different resins bearing a thioglycolic acid unit. In the
case of Argogel® resin, a more straightforward route
was developed (Scheme 2) starting from methyl thiogly-
colate and leading in two steps to the desired function-
alized resin 10. In the case of Merrifield resin
(chloromethylated polystyrene crosslinked with 1%
divinylbenzene, 1.09 mmol/g), this was transformed to
the functionalized thiol resin 11, using a 1,4-butanediol
spacer according to a published procedure.11 Thiol-
resin 11 was then reacted with methyl bromoacetate
and triethylamine in DMF. The supported ester 12 was
characterized by MAS–1H NMR and FT-IR (�C�O,
1739 cm−1) and then saponified (NaOH, THF–H2O) to
the desired functionalized resin 13 (�C�O, 1730 cm−1)
(Scheme 2).

Functionalized resins 10 or 13 were reacted with �-
hydroxy vinylketone 1412 using DCC and DMAP in
DCM to give supported vinylketone 15 (Scheme 3). The
thioether of 15 was activated with MeOTf in DCM to
the corresponding resin bound sulfonium salt 16, which
was purified by filtration and washings. Treatment of
16 with DBU generated the stabilized sulfur ylide which
underwent cyclative cleavage to give the macrocyclic
lactone (±)-17, bearing a cyclopropyl ring7 condensed
to the macrocycle, in good yield and purity as a single
diastereoisomer (trans).15

Scheme 2. Preparation of resins 10 and 13, functionalized as thioglycolic acid.

Scheme 3. Solid-phase synthesis and cyclative release of macrocyclic lactone (±)-17.
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Scheme 4. Solid-phase synthesis and cyclative release of
macrocyclic lactone (±)-22.

cyclization precursor 26, which underwent cyclative
cleavage under the usual conditions to give macrocyclic
lactones 27 and 28 (1:1)19 (Scheme 5).

After optimization, this methodology will be employed
for the synthesis of a library of macrocyclic lactones
with potential biological interest, bearing the uncom-
mon ‘condensed-cyclopropyl’ functionality.9
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11. Vanier, C.; Lorgé, F.; Wagner, A.; Mioskowski, C.
Angew. Chem. 2000, 112, 1745–1749; Angew. Chem., Int.
Ed. Engl. 2000, 39, 1679–1683. A modified procedure was
followed in one of the synthetic steps: PBr3, THF, 0°C to
rt was used instead of MsCl, Et3N, CH2Cl2, rt. We thank
Dr. Wagner for exchange of experimental procedures and
helpful discussions.

12. �-Hydroxy vinylketone 14 was prepared as follows: com-
mercially available 12-hydroxylauric acid was protected
at the terminal hydroxy group (TBDPS-Cl, imidazole,
DMF, rt, 1 h, 67%). The �-OTBDPS-protected acid was
transformed into the Weinreb amide (N,O-dimethylhy-
droxylamine hydrochloride, 1,1�-carbonyldiimidazole,
DCM, rt, 4 h, 91%) and subsequently reduced to alde-
hyde (DIBAl-H, THF, 0°C, 45 min, 80%). The aldehyde
was then treated with vinylmagnesium bromide (THF,
−75 to 0°C, 1.5 h, 60%) to give the allylic alcohol, which
was in turn oxidized to the vinylketone [Dess Martin
Periodinane (DMP),13 DCM, rt, 1 h, 92%]. The �-OTB-
DPS-protected vinylketone was deprotected (TBAF, p-
TsOH–H2O, THF, 0°C to rt, 80 h, 80%)14 to give the
�-hydroxy vinylketone 14.

13. Dess Martin Periodinane (DMP): (a) Dess, D. B.; Mar-
tin, J. C. J. Am. Chem. Soc. 1991, 113, 7277–7287; (b)
Ireland, R. E.; Liu, L. J. Org. Chem. 1993, 58, 2899–
2899.

14. Hitchcock, S. A.; Houldsworth, S. J.; Pattenden, G.;
Pryde, D. C.; Thomson, N. M.; Blake, A. J. J. Chem.
Soc., Perkin Trans. 1 1998, 3181–3206.

15. The loading of cyclization precursor 15 (0.35 mmol/g for
Argogel® resin; 0.81 mmol/g for Merrifield resin) was

calculated from the original loading of the commercial
resin (0.44 mmol/g for Argogel®-Cl resin; 1.09 mmol/g
for Merrifield resin) and considering a 100% yield for
each solid-phase synthetic step preceding the cyclization.
The overall yield for the solid-phase synthesis of macro-
cycle (±)-17 was calculated based on the above loading
values: 52% from Argogel® precursor 15 (31% after flash
chromatography); 20% from Merrifield precursor 15
(10% after flash chromatography). Lactone (±)-17 was
also synthesized in solution-phase, following the same
chemistry described in Scheme 3 but using S-ethyl thio-
glycolic acid instead of resins 10 or 13. Sulfonium salt
formation (1.5 equiv. MeOTf, DCM, rt, 1 h) and macro-
cyclization (2 equiv. DBU) under high dilution conditions
(10−3 M in DCM, rt, 20 h) gave lactone (±)-17, which was
purified by flash-chromatography (60% yield) and charac-
terized as follows. 1H NMR (CDCl3, 400 MHz): � 1.20–
1.45 (14H, bs), 1.40–1.56 (2H, m), 1.60–1.75 (4H, m),
2.10 (1H, ddd, J1=9.2 Hz, J2=5.9 Hz, J3=3.7 Hz), 2.35
(1H, ddd, J1=14.1 Hz, J2=8.0 Hz, J3=6.3 Hz), 2.51
(1H, ddd, J1=9.1 Hz, J2=5.7 Hz, J3=3.7 Hz), 2.70–2.80
(1H, m), 3.85–3.95 (1H, m), 4.53 (1H, ddd, J1=11.1 Hz,
J2=7.0 Hz, J3=4.2 Hz). 13C NMR (CDCl3, 50.13 MHz):
� 16.2, 24.9, 28.7, 24.3–27.8 (7C), 44.1, 64.6, 209.0.
HRMS [EI (70 eV)] calcd for [C16H26O3]+ 266.1882,
found 266.1825.

16. �-Hydroxy propenylketones 18 and 19 were prepared as
described in Ref. 12 for �-hydroxy vinylketone 14 but
using propenylmagnesium bromide instead of vinylmag-
nesium bromide (THF, −75 to 0°C, 2.5 h, 70%). The
allylic alcohols (E+Z) were in turn oxidized to the
propenylketones [DMP,13 DCM, rt, 1.5 h, 77%]. The
�-OTBDPS-protected propenylketones were separated by
flash-chromatography (E :Z=1:1) and deprotected
(TBAF, p-TsOH–H2O, THF, 0°C to rt, 20 h, 84%)14 to
give the �-hydroxy propenylketones 18 and 19.

17. The loading of cyclization precursor 20 or 21 (0.34 mmol/
g for Argogel® resin; 0.81 mmol/g for Merrifield resin)
was calculated from the original loading of the commer-
cial resin (0.44 mmol/g for Argogel®-Cl resin; 1.09 mmol/
g for Merrifield resin) and considering a 100% yield for
each solid-phase synthetic step preceding the cyclization.
The overall yield for the solid-phase synthesis of macro-
cycle (±)-22 was calculated based on the above loading
values: 15% from Argogel® precursor 20 or 21 (8% after
flash chromatography); 5% from Merrifield precursor 20
or 21 (2% after flash chromatography). Lactone (±)-22
was also synthesized in solution-phase, following the
same chemistry described in Scheme 4 but using S-ethyl
thioglycolic acid instead of resins 10 or 13. Sulfonium salt
formation (1.5 equiv. MeOTf, DCM, rt, 1 h) and macro-
cyclization (2 equiv. DBU) under high dilution conditions
(10−3 M in DCM, rt, 20 h) gave lactone (±)-22 which was
purified by flash-chromatography (10% yield) and charac-
terized as follows. 1H NMR (CDCl3, 400 MHz): � 1.20–
1.40 (17H, bs), 1.60–1.70 (4H, m), 1.91–2.03 (1H, m),
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NMR spectrum (CDCl3, 400 MHz).
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precursor 26 was calculated from the original loading of
commercial Argogel®-Cl resin (0.44 mmol/g) and consid-
ering a 100% yield for each solid-phase synthetic step
preceding the cyclization. The overall yield for the solid-
phase synthesis of macrocycle 27 and 28 was calculated
based on the above loading value: 33% (18% after flash
chromatography). Lactones 27 and 28 were also synthe-
sized in solution-phase, following the same chemistry
described in Scheme 5 but using S-ethyl thioglycolic acid
instead of resin 10. Sulfonium salt formation (1.5 equiv.
MeOTf, DCM, rt, 1 h) and macrocyclization (2 equiv.

DBU) under high dilution conditions (10−3 M in DCM,
rt, 20 h) gave lactones 27 and 28 which were separated by
flash-chromatography (63% combined yield) and charac-
terized as follows. 1H NMR (CDCl3, 400 MHz) 27 (or
28): � 1.28–1.45 (10H, bs), 1.49 (3H, d, J=7.0 Hz),
1.50–1.54 (2H, m), 1.61–1.71 (3H, m), 1.82–1.92 (1H, m),
2.15 (1H, ddd, J1=10.3 Hz, J2=6.2 Hz, J3=3.9 Hz),
2.39–2.49 (1H, m), 2.70–2.80 (2H, m), 4.14–4.28 (2H, m),
5.07 (1H, q, J=7.0 Hz). 13C NMR DEPT (CDCl3, 100.6
MHz): � 16.4, 17.1, 24.4, 25.4, 24.6–28.1 (5C), 28.4, 29.0,
43.3, 65.9, 69.8. 1H NMR (CDCl3, 400 MHz) 28 (or 27):
� 1.20–1.45 (10H, bs), 1.48–1.52 (2H, m), 1.53 (3H, d,
J=7.0 Hz), 1.60–1.72 (3H, m), 1.85–1.95 (1H, m), 2.26
(1H, ddd, J1=9.0 Hz, J2=5.7 Hz, J3=3.8 Hz), 2.44 (1H,
ddd, J1=15.5 Hz, J2=8.1 Hz, J3=4.9 Hz), 2.60 (1H,
ddd, J1=8.8 Hz, J2=5.9 Hz, J3=3.8 Hz), 2.75 (1H, ddd,
J1=15.5 Hz, J2=8.5 Hz, J3=4.8 Hz), 4.10–4.29 (2H, m),
5.27 (1H, q, J=7.0 Hz). HRMS [EI (70 eV)] calcd for
[C17H26O5]+ 310.1780, found 310.1758.


