207 research outputs found

    Medical management of hereditary optic neuropathies.

    Get PDF
    Hereditary optic neuropathies are diseases affecting the optic nerve. The most common are mitochondrial hereditary optic neuropathies, i.e., the maternally inherited Leber's hereditary optic neuropathy (LHON) and dominant optic atrophy (DOA). They both share a mitochondrial pathogenesis that leads to the selective loss of retinal ganglion cells and axons, in particular of the papillo-macular bundle. Typically, LHON is characterized by an acute/subacute loss of central vision associated with impairment of color vision and swelling of retinal nerve fibers followed by optic atrophy. DOA, instead, is characterized by a childhood-onset and slowly progressive loss of central vision, worsening over the years, leading to optic atrophy. The diagnostic workup includes neuro-ophthalmologic evaluation and genetic testing of the three most common mitochondrial DNA mutations affecting complex I (11778/ND4, 3460/ND1, and 14484/ND6) for LHON and sequencing of the nuclear gene OPA1 for DOA. Therapeutic strategies are still limited including agents that bypass the complex I defect and exert an antioxidant effect (idebenone). Further strategies are aimed at stimulating compensatory mitochondrial biogenesis. Gene therapy is also a promising avenue that still needs to be validated

    Retinal Ganglion Cells and Circadian Rhythms in Alzheimer’s Disease, Parkinson’s Disease, and Beyond

    Get PDF
    There is increasing awareness on the role played by circadian rhythm abnormalities in neurodegenerative disorders such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). The characterization of the circadian dysfunction parallels the mounting evidence that the hallmarks of neurodegeneration also affect the retina and frequently lead to loss of retinal ganglion cells (RGCs) and to different degrees of optic neuropathy. In the RGC population, there is the subgroup of cells intrinsically photosensitive and expressing the photopigment melanopsin [melanopsin-containing retinal ganglion cells (mRGCs)], which are now well known to drive the entrainment of circadian rhythms to the light–dark cycles. Thus, the correlation between the pathological changes affecting the retina and mRGCs with the circadian imbalance in these neurodegenerative diseases is now clearly emerging, pointing to the possibility that these patients might be amenable to and benefit from light therapy. Currently, this connection is better established for AD and PD, but the same scenario may apply to other neurodegenerative disorders, such as Huntington’s disease. This review highlights similarities and differences in the retinal/circadian rhythm axis in these neurodegenerative diseases posing a working frame for future studies

    Melanopsin-expressing retinal ganglion cells are resistant to cell injury, but not always

    Get PDF
    Melanopsin retinal ganglion cells (mRGCs) are intrinsically photosensitive RGCs deputed to non-image forming functions of the eye such as synchronization of circadian rhythms to light-dark cycle. These cells are characterized by unique electrophysiological, anatomical and biochemical properties and are usually more resistant than conventional RGCs to different insults, such as axotomy and different paradigms of stress. We also demonstrated that these cells are relatively spared compared to conventional RGCs in mitochondrial optic neuropathies (Leber's hereditary optic neuropathy and Dominant Optic Atrophy). However, these cells are affected in other neurodegenerative conditions, such as glaucoma and Alzheimer's disease. We here review the current evidences that may underlie this dichotomy. We also present our unpublished data on cell experiments demonstrating that melanopsin itself does not explain the robustness of these cells and some preliminary data on immunohistochemical assessment of mitochondria in mRGCs

    A neurodegenerative perspective on mitochondrial optic neuropathies

    Get PDF
    Mitochondrial optic neuropathies constitute an important cause of chronic visual morbidity and registrable blindness in both the paediatric and adult population. It is a genetically heterogeneous group of disorders caused by both mitochondrial DNA (mtDNA) mutations and a growing list of nuclear genetic defects that invariably affect a critical component of the mitochondrial machinery. The two classical paradigms are Leber hereditary optic neuropathy (LHON), which is a primary mtDNA disorder, and autosomal dominant optic atrophy (DOA) secondary to pathogenic mutations within the nuclear gene OPA1 that encodes for a mitochondrial inner membrane protein. The defining neuropathological feature is the preferential loss of retinal ganglion cells (RGCs) within the inner retina but, rather strikingly, the smaller calibre RGCs that constitute the papillomacular bundle are particularly vulnerable, whereas melanopsin-containing RGCs are relatively spared. Although the majority of patients with LHON and DOA will present with isolated optic nerve involvement, some individuals will also develop additional neurological complications pointing towards a greater vulnerability of the central nervous system (CNS) in susceptible mutation carriers. These so-called “plus” phenotypes are mechanistically important as they put the loss of RGCs within the broader perspective of neuronal loss and mitochondrial dysfunction, highlighting common pathways that could be modulated to halt progressive neurodegeneration in other related CNS disorders. The management of patients with mitochondrial optic neuropathies still remains largely supportive, but the development of effective disease-modifying treatments is now within tantalising reach helped by major advances in drug discovery and delivery, and targeted genetic manipulation

    Functional Changes of Retinal Ganglion Cells and Visual Pathways in Patients with Chronic Leber's Hereditary Optic Neuropathy during One Year of Follow-up.

    Get PDF
    Purpose: To assess changes of retinal ganglion cells (RGCs) and visual pathways' function in patients with Leber's hereditary optic neuropathy (LHON) during 12 months of follow-up of the chronic phase. Design: Retrospective case series. Participants: Twenty-two patients with LHON (mean age, 36.3±9.3 years) in the "chronic phase" of the disease, providing 42 eyes (LHON group) with different pathogenic mitochondrial DNA mutations (group 11778: 21 eyes; group 3460: 4 eyes; group 14484: 13 eyes; and group 14568: 4 eyes) were enrolled. Twenty-five age-similar healthy participants, providing 25 eyes, served as controls. Methods: Pattern electroretinogram (PERG) and visual evoked potentials (VEP), in response to 60ʹ and 15ʹ checks visual stimuli, were recorded at baseline in all subjects and after 6 and 12 months of follow-up in patients with LHON. At baseline, in all LHON eyes for each PERG and VEP parameter (amplitude and implicit time), the 95% confidence limit (CL) of test–retest variability was calculated. The PERG and VEP mean values observed in LHON eyes were compared (1-way analysis of variance [ANOVA]) with those of controls. During the follow-up, the PERG and VEP differences observed with respect to baseline were evaluated by ANOVA. Main Outcome Measures: Changes of individual and mean absolute values of 60ʹ and 15ʹ PERG amplitude and VEP amplitude and implicit time at each time point compared with baseline values in the LHON group. Results: At baseline, mean values of PERG and VEP parameters detected in the LHON group were significantly (P 0.01) different from baseline values. Conclusions: In our untreated patients with chronic LHON, with different specific pathogenic mutations, RGCs and visual pathways function were not significantly modified during 12 months of follow-up. This should be considered in the disease natural history when attempts for treatments are proposed in chronic LHON

    Hearing Dysfunction in a Large Family Affected by Dominant Optic Atrophy (OPA8-Related DOA): A Human Model of Hidden Auditory Neuropathy

    Get PDF
    Hidden auditory neuropathy is characterized by reduced performances in challenging auditory tasks with the preservation of hearing thresholds, resulting from diffuse loss of cochlear inner hair cell (IHC) synapses following primary degeneration of unmyelinated terminals of auditory fibers. We report the audiological and electrophysiological findings collected from 10 members (4 males, 6 females) of a large Italian family affected by dominant optic atrophy, associated with the OPA8 locus, who complained of difficulties in understanding speech in the presence of noise. The patients were pooled into two groups, one consisting of 4 young adults (19–50 years) with normal hearing thresholds, and the other made up of 6 patients of an older age (55–72 years) showing mild hearing loss. Speech perception scores were normal in the first group and decreased in the second. Otoacoustic emissions (OAEs) and cochlear microphonics (CMs) recordings were consistent with preservation of outer hair cell (OHC) function in all patients, whereas auditory brainstem responses (ABRs) showed attenuated amplitudes in the first group and severe abnormalities in the second. Middle ear acoustic reflexes had delayed peak latencies in all patients in comparison with normally hearing individuals. Transtympanic electrocochleography (ECochG) recordings in response to 0.1 ms clicks at intensities from 120 to 60 dB peak equivalent SPL showed a reduction in amplitude of both summating potential (SP) and compound action potential (CAP) together with delayed CAP peak latencies and prolonged CAP duration in all patients in comparison with a control group of 20 normally hearing individuals. These findings indicate that underlying the hearing impairment in OPA8 patients is hidden AN resulting from diffuse loss of IHCs synapses. At an early stage the functional alterations only consist of abnormalities of ABR and ECochG potentials with increased latencies of acoustic reflexes, whereas reduction in speech perception scores become apparent with progression of the disease. Central mechanisms increasing the cortical gain are likely to compensate for the reduction of cochlear input

    Association of the mtDNA m.4171C>A/MT-ND1 mutation with both optic neuropathy and bilateral brainstem lesions

    Get PDF
    Background: An increasing number of mitochondrial DNA (mtDNA) mutations, mainly in complex I genes, have been associated with variably overlapping phenotypes of Leber’s hereditary optic neuropathy (LHON), mitochondrial encephalomyopathy with stroke-like episodes (MELAS) and Leigh syndrome (LS). We here describe the first case in which the m.4171C>A/MT-ND1 mutation, previously reported only in association with LHON, leads also to a Leigh-like phenotype. Case presentation: A 16-year-old male suffered subacute visual loss and recurrent vomiting and vertigo associated with bilateral brainstem lesions affecting the vestibular nuclei. His mother and one sister also presented subacute visual loss compatible with LHON. Sequencing of the entire mtDNA revealed the homoplasmic m.4171C>A/MT-ND1 mutation, previously associated with pure LHON, on a haplogroup H background. Three additional non-synonymous homoplasmic transitions affecting ND2 (m.4705T>C/MT-ND2 and m.5263C>T/MT-ND2) and ND6 (m.14180T>C/MT-ND6) subunits, well recognized as polymorphisms in other mtDNA haplogroups but never found on the haplogroup H background, were also present. Conclusion: This case widens the phenotypic expression of the rare m.4171C>A/MT-ND1 LHON mutation, which may also lead to Leigh-like brainstem lesions, and indicates that the co-occurrence of other ND non-synonymous variants, found outside of their usual mtDNA backgrounds, may have increased the pathogenic potential of the primary LHON mutation
    • …
    corecore