394 research outputs found

    The use of the indentation test for studying the solidification behaviour of different semicrystalline polymers during injection moulding

    Get PDF
    An in-line method for monitoring the solidification process during injection molding of semicrystalline polymers (demonstrated previously in J. Appl. Polym. Sci.2003, 89, 3713) is based on a simple device, where an additional ejector pin is pushed on the injection molded part at different times during the solidification phase. The ‘indentation depth profile’, i.e., residual deformation as a function of time, was obtained and allowed to determine the evolution of the solidification front in the mold as a function of the cooling time. The present work shows the reliability and the powerfulness of the aforementioned method for a large variety of different semicrystalline polymers (PET, PBT, polyamide-6 PA6, isotactic poly(propylene) iPP) characterized also by different molecular weight and/or nucleating agents. The results show that the indentation test may be considered as a ‘predictive’ tool to qualitatively and quantitatively compare the solidification process of different polymers and polymer grades during injection molding

    SUSTAINABLE PRODUCTION OF FENNEL AND DILL BY INTERCROPPING

    Get PDF
    Intercropping is claimed to be one of the most significant cropping techniques in sustainable agriculture, and much research and many reviews attribute to its utilization a number of environmental benefits, from promoting land biodiversity to diversifying agricultural outcome. In this sense, intercropping is thought to be a useful means of minimizing the risks of agricultural production in many environments, including those typical of under-developed or marginal areas. In order to validate this hypothesis in a representative area of the semiarid Mediterranean environment, we evaluated the possibility of growing dill and fennel, both belonging to the family Apiaceae, in temporary intercropping. Our trial was performed in Sicily in 2000–01 and 2001–02; in the first year, fennel and dill were cultivated in a mixture using a substitution scheme, whereas in 2001–02 we evaluated the bio-agronomical and chemical features of fennel alone. The biological efficiency of the intercropping system was evaluated by using the Land Equivalent Ratio and the Competitive Ratio, and an estimate of the interaction effects of both crops was performed by analyzing the major vegetative and yield traits of plants, along with the chemical profile of volatiles of the fruits. Both in grain yield and in biomass yield, the most efficient cropping system was the intercropping ratio with a higher proportion of fennel, in which the competitive ratio values calculated for dill reached 1.90 for grain and 2.59 for biomass. Our results also indicate that the presence of dill exerted a clear stabilizing effect on fennel seed yield of the following year: whereas no difference in fennel seed yield was detected from one year to the following on the previously intercropped plots, in the repeated pure stand a 50% yield reduction was recorded. In the trial environment, the technique showed a good potential to improve the efficiency of resource utilization; further long-term experiments will be necessary in order to demonstrate the application of such a technique to other medicinal and aromatic plant mixtures

    Poly-L-Lactic Acid (PLLA)-Based Biomaterials for Regenerative Medicine: A Review on Processing and Applications

    Get PDF
    Synthetic biopolymers are effective cues to replace damaged tissue in the tissue engineering(TE) field, both for in vitro and in vivo application. Among them, poly-L-lactic acid (PLLA) has beenhighlighted as a biomaterial with tunable mechanical properties and biodegradability that allowsfor the fabrication of porous scaffolds with different micro/nanostructures via various approaches.In this review, we discuss the structure of PLLA, its main properties, and the most recent advancesin overcoming its hydrophobic, synthetic nature, which limits biological signaling and proteinabsorption. With this aim, PLLA-based scaffolds can be exposed to surface modification or combinedwith other biomaterials, such as natural or synthetic polymers and bioceramics. Further, variousfabrication technologies, such as phase separation, electrospinning, and 3D printing, of PLLA-basedscaffolds are scrutinized along with the in vitro and in vivo applications employed in various tissuerepair strategies. Overall, this review focuses on the properties and applications of PLLA in theTE field, finally affording an insight into future directions and challenges to address an effectiveimprovement of scaffold properties

    Poly-Left-Lactic Acid tubular scaffolds via Diffusion Induced Phase Separation (DIPS): control of morphology

    Get PDF
    n this work, tubular poly-left-lactic acid scaffolds for vascular tissue engineering applications were produced by an innovative two-step method. The scaffolds were obtained by performing a dip-coating around a nylon fiber, followed by a diffusion induced phase separation process. Morphological analysis revealed that the internal lumen of the as-obtained scaffold is equal to the diameter of the fiber utilized; the internal surface is homogeneous with micropores 1–2 μm large. Moreover, a porous open structure was detected across the thickness of the walls of the scaffold. An accurate analysis of the preparation process revealed that it is possible to tune up the morphology of the scaffold (wall thickness, porosity, and average pore dimension), simply by varying some experimental parameters. Preliminary in vitro cell culture tests were carried out inside the scaffold. The results showed that cells are able to grow within the internal surface of the scaffolds and after 3 weeks they begin to form a “primordial” vessel-like structure. Modeling predictions of the dip-coating process display always an underestimate of experimental data (dependence of wall thickness upon extraction rate).In this work, tubular poly-left-lactic acid scaffolds for vascular tissue engineering applications were produced by an innovative two-step method. The scaffolds were obtained by performing a dip-coating around a nylon fiber, followed by a diffusion induced phase separation process. Morphological analysis revealed that the internal lumen of the as-obtained scaffold is equal to the diameter of the fiber utilized; the internal surface is homogeneous with micropores 1–2 lm large. Moreover, a porous open structure was detected across the thickness of the walls of the scaffold. An accurate analysis of the preparation process revealed that it is possible to tune up the morphology of the scaffold (wall thickness, porosity, and average pore dimension), simply by varying some experimental parameters. Preliminary in vitro cell culture tests were carried out inside the scaffold. The results showed that cells are able to grow within the internal surface of the scaffolds and after 3 weeks they begin to form a ‘‘primordial’’ vessel-like structure. Modeling predictions of the dipcoating process display always an underestimate of experimental data (dependence of wall thickness upon extraction rate)

    Solution-based processing for scaffold fabrication in tissue engineering applications: A brief review

    Get PDF
    The fabrication of 3D scaffolds is under wide investigation in tissue engineering (TE) because of its incessant development of new advanced technologies and the improvement of traditional processes. Currently, scientific and clinical research focuses on scaffold characterization to restore the function of missing or damaged tissues. A key for suitable scaffold production is the guarantee of an interconnected porous structure that allows the cells to grow as in native tissue. The fabrication techniques should meet the appropriate requirements, including feasible reproducibility and time-and cost-effective assets. This is necessary for easy processability, which is associated with the large range of biomaterials supporting the use of fabrication technologies. This paper presents a review of scaffold fabrication methods starting from polymer solutions that provide highly porous structures under controlled process parameters. In this review, general information of solution-based technologies, including freeze-drying, thermally or diffusion induced phase separation (TIPS or DIPS), and electrospinning, are presented, along with an overview of their technological strategies and applications. Furthermore, the differences in the fabricated constructs in terms of pore size and distribution, porosity, morphology, and mechanical and biological properties, are clarified and critically reviewed. Then, the combination of these techniques for obtaining scaffolds is described, offering the advantages of mimicking the unique architecture of tissues and organs that are intrinsically difficult to design

    PLLA biodegradable scaffolds for angiogenesis via Diffusion Induced Phase Separation (DIPS)

    Get PDF
    A critical obstacle in tissue engineering is the inability to maintain large masses of living cells upon transfer from the in vitro culture conditions into the host in vivo. Capillaries, and the vascular system, are required to supply essential nutrients, including oxygen, remove waste products and provide a biochemical communication “highway”. For this reason it is mandatory to manufacture an implantable structure where the process of vessel formation – the angiogenesis – can take place. In this work PLLA scaffolds for vascular tissue engineering were produced by dip-coating via Diffusion Induced Phase Separation (DIPS) technique. The scaffolds, with a vessel-like shape, were obtained by performing a DIPS process around a nylon fibre whose diameter was 700 μm. The fibre was first immersed into a 4% PLLA dioxane solution and subsequently immersed into a second bath containing distilled water. The covered fibre was then rinsed in order to remove the excess of dioxane and dried; finally the internal nylon fibre was pulled out so as to obtain a hollow biodegradable PLLA fiber. SEM analysis revealed that the scaffolds have a lumen of ca. 700 μm. The internal surface is homogeneous with micropores 1–2 μm large. Moreover, a cross section analysis showed an open structure across the thickness of the scaffold walls. A cell culture of endothelial cells was carried out into the as-prepared scaffolds. The result showed that cells are able to grow within the scaffolds and after 3 weeks they begin to form a “primordial” vessel-like structure

    liac meeting on vascular research 2013

    Get PDF
    1Dipartimento di Scienze Biomediche, Universita degli Studi di Sassari, 07100 Sassari, Italy 2Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Universita degli Studi di Palermo, 90128 Palermo, Italy 3Departement de Biologie Pharmaceutique-Laboratoire de Biochimie Fondamentale, Moleculaire et Clinique, Universite d'Aix-Marseille, INSERM UMR S1076, 13385 Marseille, France 4G.I.R. BIOFORGE (Group for Advanced Materials and Nanobiotechnology), Universidad de Valladolid, CIBER-BBN, 47011 Valladolid, Spai

    Engineered membranes for residual cell trapping on microfluidic blood plasma separation systems. A comparison between porous and nanofibrous membranes

    Get PDF
    Blood-based clinical diagnostics require challenging limit-of-detection for low abundance, circulating molecules in plasma. Micro-scale blood plasma separation (BPS) has achieved remarka-ble results in terms of plasma yield or purity, but rarely achieving both at the same time. Here, we proposed the first use of electrospun polylactic-acid (PLA) membranes as filters to remove residual cell population from continuous hydrodynamic-BPS devices. The membranes hydrophilicity was improved by adopting a wet chemistry approach via surface aminolysis as demonstrated through Fourier Transform Infrared Spectroscopy and Water Contact Angle analysis. The usability of PLA-membranes was assessed through degradation measurements at extreme pH values. Plasma purity and hemolysis were evaluated on plasma samples with residual red blood cell content (1, 3, 5% hematocrit) corresponding to output from existing hydrodynamic BPS systems. Commercially available membranes for BPS were used as benchmark. Results highlighted that the electrospun membranes are suitable for downstream residual cell removal from blood, permitting the collection of up to 2 mL of pure and low-hemolyzed plasma. Fluorometric DNA quantification revealed that electrospun membranes did not significantly affect the concentration of circulating DNA. PLA-based electrospun membranes can be combined with hydrodynamic BPS in order to achieve high volume plasma separation at over 99% plasma purity

    Solidification of syndiotactic polystyrene by a continuous cooling transformation approach

    Get PDF
    Syndiotactic polystyrene (sPS) was solidified from the melt under drastic conditions according to a continuous cooling transformation methodology developed by the authors, which covered a cooling rate range spanning from approximately 0.03 to 3000 °C/s. The samples produced, structurally homogeneous across both their thickness and surface, were analyzed by macroscopic methods, such as density, wide-angle X-ray diffraction (WAXD), and microhardness (MH) measurements. The density was strictly related to the phase content, as confirmed by WAXD deconvolution. The peculiar behavior encountered (the density first decreasing and then increasing with the cooling rate) was attributed to the singularity of the phases formed in sPS; that is, one of the crystalline phases (α) was less dense than the amorphous phase, and the latter, in turn, was less dense than the other crystalline phase (β). With an increasing cooling rate, the thermodynamically stable phase (β) disappeared first, and it was followed by the α phase. On the other hand, the MH values remarkably depended on the amount of the β phase, the α-phase content influencing the mechanical properties only to a minor extent. The behavior of the crystallization kinetics was described through a modified multiphase Kolmogoroff–Avrami–Evans model for nonisothermal crystallization
    corecore