127,749 research outputs found

    News on the X-ray emission from hot subdwarf stars

    Get PDF
    In latest years, the high sensitivity of the instruments on-board the XMM-Newton and Chandra satellites allowed us to explore the properties of the X-ray emission from hot subdwarf stars. The small but growing sample of X-ray detected hot subdwarfs includes binary systems, in which the X-ray emission is due to wind accretion onto a compact companion (white dwarf or neutron star), as well as isolated sdO stars, in which X-rays are probably due to shock instabilities in the wind. X-ray observations of these low-mass stars provide information which can be useful for our understanding of the weak winds of this type of stars and can lead to the discovery of particularly interesting binary systems. Here we report the most recent results we have recently obtained in this research area.Comment: 8 pages, 3 figures. To appear in the Proceedings of the 8th Meeting on Hot Subdwarf Stars and Related Objects, 9-15 July 2017, Cracow, Poland. Eds. A. Baran, A. E. Lynas-Gray, Open Astronomy, in pres

    Swift monitoring of the massive X-ray binary SAX J0635.2+0533

    Get PDF
    SAX J0635.2+0533 is a binary pulsar with a very short pulsation period (PP = 33.8 ms) and a high long-term spin down (P˙\dot P >> 3.8×10−13\times10^{-13} s s−1^{-1}), which suggests a rotation-powered (instead of an accretion-powered) nature for this source. While it was discovered at a flux level around 10−11^{-11} erg cm−2^{-2} s−1^{-1}, between 2003 and 2004 this source was detected with XMM-Newton at an average flux of about 10−13^{-13} erg cm−2^{-2} s−1^{-1}; moreover, the flux varied of over one order of magnitude on time scales of a few days, sometimes decreasing below 3×10−143\times10^{-14} erg cm−2^{-2} s−1^{-1}. Since both the rotation-powered and the accretion-powered scenarios have difficulties to explain these properties, the nature of SAX J0635.2+0533 is still unclear. Here we report on our recent long-term monitoring campaign on SAX J0635.2+0533 carried out with Swift and on a systematic reanalysis of all the RXTE observations performed between 1999 and 2001. We found that during this time interval the source remained almost always active at a flux level above 10−12^{-12} erg cm−2^{-2} s−1^{-1}.Comment: 8 pages, 6 figures, 2 tables. Accepted for publication in Astronomy & Astrophysic

    Top Quark as a Dark Portal and Neutrino Mass Generation

    Get PDF
    We present a new model for radiatively generating Majorana active neutrino masses while incorporating a viable dark matter candidate. This is possible by extending the Standard Model with a single Majorana neutrino endowed with a dark parity, a colour electroweak singlet scalar, as well as a colour electroweak triplet scalar. Within this framework, the upup-type quarks play a special role, serving as a portal for dark matter, and a messenger for neutrino mass generation. We consider three benchmark scenarios where the abundance of dark matter can match the latest experimental results, while generating neutrino masses in the milli-electronvolt range. We show how constraints from lepton flavour violation, in particular the branching fraction of μ→eγ\mu\to e\gamma, can place lower bounds on the coupling between our dark matter candidate and top quarks. Furthermore, we show that this coupling can also be constrained using collider data from the Tevatron and the LHC.Comment: 8 captions, 10 figure

    A closer look at string resonances in dijet events at the LHC

    Full text link
    The first string excited state can be observed as a resonance in dijet invariant mass distributions at the LHC, if the scenario of low-scale string with large extra dimensions is realized. A distinguished property of the dijet resonance by string excited states from that the other "new physics" is that many almost degenerate states with various spin compose a single resonance structure. It is examined that how we can obtain evidences of low-scale string models through the analysis of angular distributions of dijet events at the LHC. Some string resonance states of color singlet can obtain large mass shifts through the open string one-loop effect, or through the mixing with closed string states, and the shape of resonance structure can be distorted. Although the distortion is not very large (10% for the mass squared), it might be able to observe the effect at the LHC, if gluon jets and quark jets could be distinguished in a certain level of efficiency.Comment: 12 pages, 8 figure

    Dark Matter and IMF normalization in Virgo dwarf early-type galaxies

    Get PDF
    In this work we analyze the dark matter (DM) fraction, fDMf_{DM}, and mass-to-light ratio mismatch parameter, δIMF\delta_{IMF} (computed with respect to a Milky-Way-like IMF), for a sample of 39 dwarf early-type galaxies (dEs) in the Virgo cluster. Both fDMf_{DM} and δIMF\delta_{IMF} are estimated within the central (one effective radius) galaxy regions, with a Jeans dynamical analysis that relies on galaxy velocity dispersions, structural parameters, and stellar M/L ratios from the SMAKCED survey. In this first attempt to constrain, simultaneously, the IMF normalization and the DM content, we explore the impact of different assumptions on the DM model profile. On average, for a NFW profile, the δIMF\delta_{IMF} is consistent with a Chabrier-like normalization (δIMF∼1\delta_{IMF} \sim 1), with fDM∼0.35f_{DM} \sim 0.35. One of the main results of the present work is that for at least a few systems the δIMF\delta_{IMF} is heavier than the MW-like value (i.e. either top- or bottom-heavy). When introducing tangential anisotropy, larger δIMF\delta_{IMF} and smaller fDMf_{DM} are derived. Adopting a steeper concentration-mass relation than that from simulations, we find lower δIMF\delta_{IMF} (<1< 1) and larger fDMf_{DM}. A constant M/L profile with null fDMf_{DM} gives the heaviest δIMF\delta_{IMF} (∼2\sim 2). In the MONDian framework, we find consistent results to those for our reference NFW model. If confirmed, the large scatter of δIMF\delta_{IMF} for dEs would provide (further) evidence for a non-universal IMF in early-type systems. On average, our reference fDMf_{DM} estimates are consistent with those found for low-σe\sigma_{e} (∼100 kms−1\rm \sim 100 \, \rm km s^{-1}) early-type galaxies (ETGs). Furthermore, we find fDMf_{DM} consistent with values from the SMAKCED survey, and find a double-value behavior of fDMf_{DM} with stellar mass, which mirrors the trend of dynamical M/L and global star formation efficiency with mass.Comment: 11 pages, 3 figures, 1 table, published on MNRAS. Figure 1 has been updated with respect to version 1, including the range of values found if the S\'ersic index, n, is varied from 0.5 to 2 (dark-green curves

    Improving Transient Performance of Adaptive Control Architectures using Frequency-Limited System Error Dynamics

    Full text link
    We develop an adaptive control architecture to achieve stabilization and command following of uncertain dynamical systems with improved transient performance. Our framework consists of a new reference system and an adaptive controller. The proposed reference system captures a desired closed-loop dynamical system behavior modified by a mismatch term representing the high-frequency content between the uncertain dynamical system and this reference system, i.e., the system error. In particular, this mismatch term allows to limit the frequency content of the system error dynamics, which is used to drive the adaptive controller. It is shown that this key feature of our framework yields fast adaptation with- out incurring high-frequency oscillations in the transient performance. We further show the effects of design parameters on the system performance, analyze closeness of the uncertain dynamical system to the unmodified (ideal) reference system, discuss robustness of the proposed approach with respect to time-varying uncertainties and disturbances, and make connections to gradient minimization and classical control theory.Comment: 27 pages, 7 figure

    Three new X-ray emitting sdO stars discovered with Chandra

    Get PDF
    X-ray observations of sdO stars are a useful tool to investigate their properties, but so far only two sdO stars were detected at X-rays. We observed a complete flux-limited sample of 19 sdO stars with the Chandra HRC-I camera to measure the count rate of the detected sources or to set a tight upper limit on it for the undetected sources. We obtained a robust detection of BD+37 1977 and Feige 34 and a marginal detection of BD+28 4211. The estimated luminosity of BD+37 1977 is above 10^31 erg/s, which is high enough to suggest the possible presence of an accreting compact companion. This possibility is unlikely for all the other targets (both detected and undetected), since in their case L_X < 10^30 erg/s. On the other hand, for all 19 targets the estimated value of L_X (or its upper limit) implies an X-ray/bolometric flux ratio that agrees with log(L_X/L_bol) = -6.7 +/- 0.5, which is the range of values typical of main-sequence and giant O stars. Therefore, for Feige 34 and BD+28 4211 the observed X-ray flux is most probably due to intrinsic emission. The same is possibile for the 16 undetected stars.Comment: 6 pages. Accepted for publication by Astronomy and Astrophysic
    • …
    corecore