2,325 research outputs found
Recommended from our members
Microstructure and bonding behavior of fiber-mortar interface in fiber-reinforced concrete
The interfacial properties between fiber and matrix play a critical role in the overall mechanical responses of composite materials. In this paper, the glass fiber-mortar interfacial microstructure in fiber reinforced concrete (FRC) is visualized and characterized using X-ray microscopy. Additionally, three types of fiber-mortar interface (glass fiber, high modulus polyvinyl alcohol (PVA) fiber, and basalt fiber) are analyzed by scanning electron microscopy and energy dispersive X-ray spectroscopy. The results revealed a lot of microcracks along with the glass fiber-mortar interface; moreover, the hydration product of the glass/PVA/basalt fiber-mortar interface was much lower than that of the mortar matrix. Because microcracks or lower hydration product have such a negative effect on the interfacial bonding between fiber and mortar, the objective of this paper was to provide an analysis of this problem through extensive testing of their bonding properties. Specimens made of three types of fiber were tested along with three different mortar types under tensile stress and a combined stress state to investigate the interfacial bond properties between fiber and mortar. Results show that both of the tensile and shear bond strength of the interface were not only improved by stronger mortar matrix, but also significantly affected by fiber type. Furthermore, when the interface failed by slipping along the interfacial area, the interface showed an increasing shear bond strength with the increase of compressive stress. This was not the case when failure was due to the crushing of mortar. Finally, the FRC splitting tensile strength was tested to demonstrate the bonding mechanism effects on the FRC mechanical properties
Displacements analysis of self-excited vibrations in turning
The actual research deals with determining by a new protocol the necessary
parameters considering a three-dimensional model to simulate in a realistic way
the turning process on machine tool. This paper is dedicated to the
experimental displacements analysis of the block tool / block workpiece with
self-excited vibrations. In connexion with turning process, the self-excited
vibrations domain is obtained starting from spectra of two accelerometers. The
existence of a displacements plane attached to the tool edge point is revealed.
This plane proves to be inclined compared to the machines tool axes. We
establish that the tool tip point describes an ellipse. This ellipse is very
small and can be considered as a small straight line segment for the stable
cutting process (without vibrations). In unstable mode (with vibrations) the
ellipse of displacements is really more visible. A difference in phase occurs
between the tool tip displacements on the radial direction and on the cutting
one. The feed motion direction and the cutting one are almost in phase. The
values of the long and small ellipse axes (and their ratio) shows that these
sizes are increasing with the feed rate value. The axis that goes through the
stiffness center and the tool tip represents the maximum stiffness direction.
The maximum (resp. minimum) stiffness axis of the tool is perpendicular to the
large (resp. small) ellipse displacements axis. FFT analysis of the
accelerometers signals allows to reach several important parameters and
establish coherent correlations between tool tip displacements and the static -
elastic characteristics of the machine tool components tested
SUMO-2 promotes mRNA translation by enhancing interaction between eIF4E and eIF4G
Small ubiquitin-like modifier (SUMO) proteins regulate many important eukaryotic cellular processes through reversible covalent conjugation to target proteins. In addition to its many well-known biological consequences, like subcellular translocation of protein, subnuclear structure formation, and modulation of transcriptional activity, we show here that SUMO-2 also plays a role in mRNA translation. SUMO-2 promoted formation of the active eukaryotic initiation factor 4F (eIF4F) complex by enhancing interaction between Eukaryotic Initiation Factor 4E (eIF4E) and Eukaryotic Initiation Factor 4G (eIF4G), and induced translation of a subset of proteins, such as cyclinD1 and c-myc, which essential for cell proliferation and apoptosis. As expected, overexpression of SUMO-2 can partially cancel out the disrupting effect of 4EGI-1, a small molecule inhibitor of eIF4E/eIF4G interaction, on formation of the eIF4F complex, translation of the cap-dependent protein, cell proliferation and apoptosis. On the other hand, SUMO-2 knockdown via shRNA partially impaired cap-dependent translation and cell proliferation and promoted apoptosis. These results collectively suggest that SUMO-2 conjugation plays a crucial regulatory role in protein synthesis. Thus, this report might contribute to the basic understanding of mammalian protein translation and sheds some new light on the role of SUMO in this process. © 2014 Chen et al
The Search for Higher in Houston
It is a great pleasure to be invited to join the chorus on this auspicious
occasion to celebrate Professor K. Alex Mueller's 90th birthday by Professors
Annette Bussman-Holder, Hugo Keller, and Antonio Bianconi. As a student in high
temperature superconductivity, I am forever grateful to Professor Alex Mueller
and Dr. Georg Bednorz "for their important breakthrough in the discovery of
superconductivity in the ceramic materials" in 1986 as described in the
citation of their 1987 Nobel Prize in Physics. It is this breakthrough
discovery that has ushered in the explosion of research activities in high
temperature superconductivity (HTS) and has provided immense excitement in HTS
science and technology in the ensuing decades till now. Alex has not been
resting on his laurels and has continued to search for the origin of the
unusual high temperature superconductivity in cuprates.Comment: Dedicated to Alex Mueller, whose "important breakthrough in the
discovery of superconductivity in ceramic materials" in 1986 has changed the
world of superconductivit
Detection of mild to moderate influenza A/H7N9 infection by China's national sentinel surveillance system for influenza-like illness: case series
published_or_final_versio
The moderating effect of board gender diversity on the relation between corporate social responsibility and firm value
We examine whether female board representation moderates the effect of corporate social responsibility (CSR) performance on firm value. Using a two-stage dynamic panel generalized method of moments method, we find that the effect of CSR strengths (CSR concerns) on the market assessed firm value, measured by Tobin’s Q and annual stock return, is incrementally more positive (more negative) for firms with greater female representation on the board. Further analysis suggests that female board representation positively moderates the effect of CSR strengths on firm financial performance measured by return on assets (ROA); however, female board representation does not significantly moderate the impact of CSR concerns on ROA. Our findings suggest that board gender diversity enhances the effect of positive CSR performance on firm value, but exacerbates the negative market reactions to CSR concerns. Overall, our evidence suggests that board gender diversity may enhance or destroy firm value depending on a firm’s social and environmental performance in dimensions other than diversity
Enhanced performance in fluorene-free organometal halide perovskite light-emitting diodes using tunable, low electron affinity oxide electron injectors.
Fluorene-free perovskite light-emitting diodes (LEDs) with low turn-on voltages, higher luminance and sharp, color-pure electroluminescence are obtained by replacing the F8 electron injector with ZnO, which is directly deposited onto the CH3NH3PbBr3 perovskite using spatial atmospheric atomic layer deposition. The electron injection barrier can also be reduced by decreasing the ZnO electron affinity through Mg incorporation, leading to lower turn-on voltages.The authors would like to acknowledge funding from the Cambridge Commonwealth, European and International Trusts, Rutherford Foundation of New Zealand, A*STAR National Science Scholarship, Girton College Cambridge, Gates Cambridge Scholarship, EPSRC (Reference: EP/G060738/1), the ERC Advanced Investigator Grant, Novox, ERC-2009-adG 247276 and Cambridge Display Technology.This is the final version of the article. It was first published by Wiley at http://onlinelibrary.wiley.com/doi/10.1002/adma.201405044/abstract
Recommended from our members
Genetic dissection of heterosis using epistatic association mapping in a partial NCII mating design
Heterosis refers to the phenomenon in which an F1 hybrid exhibits enhanced growth or agronomic performance. However, previous theoretical studies on heterosis have
been based on bi-parental segregating populations instead of F1 hybrids. To understand the genetic basis of heterosis, here we used a subset of F1 hybrids, named a partial North Carolina II design, to perform association mapping for dependent variables: original trait value, general combining ability (GCA), specific combining ability (SCA) and mid-parental heterosis (MPH). Our models jointly fitted all the additive, dominance and epistatic effects. The analyses resulted in several important findings: 1) Main components are additive and
additive-by-additive effects for GCA and dominance-related effects for SCA and MPH, and additive-by-dominant effect for MPH was partly identified as additive
effect; 2) the ranking of factors affecting heterosis was dominance > dominance-by-dominance > over-dominance > complete dominance; and 3) increasing the proportion of F1 hybrids in the population could significantly increase the power to detect dominance-related effects, and slightly reduce the power to detect additive and additive-by-additive effects. Analyses of cotton and rapeseed datasets showed that more additive-by-additive QTL were detected from GCA than from trait phenotype, and fewer QTL were from MPH than from other dependent variables
Recommended from our members
The Relationship Between Stigma and Health-Related Quality of Life in People Living with HIV Who Have Full Access to Antiretroviral Treatment: An Assessment of Earnshaw and Chaudoir's HIV Stigma Framework Using Empirical Data.
The aim was to empirically test the tenets of Earnshaw and Chaudoir's HIV stigma framework and its potential covariates for persons living with HIV in Sweden. Partial least squares structural equation modelling was used on survey data from 173 persons living with HIV in Sweden. Experiencing stigma was reported to a higher extent by younger persons and by women who had migrated to Sweden. As expected, anticipated stigma was related to lower Physical functioning, and internalized stigma to lower Emotional wellbeing. In contrast to that hypothesized by the HIV stigma framework, enacted stigma was not related to Physical functioning and no relationships were found between HIV-related stigma and antiretroviral adherence. These results indicate that the HIV stigma framework may need to be revised for contexts where a very high proportion of persons living with HIV are diagnosed and under efficient treatment
A simple and rapid plate assay for screening of inulindegrading microorganisms using Lugol’s iodine solution
In this report, a simple and rapid agar plate assay was established for screening of halophilic, inulindegrading microorganisms. Two strains considered inulinolytic with this method were chosen and the inulinolytic activities in their culture supernatant were measured with the Somogyi-Nelson method, while their hydrolysis products of inulin were detected with TLC chromatogram.Key words: Screening, halophilic microorganism, inulinase, Lugol’s iodine solution
- …
