23 research outputs found

    Pharmacokinetic role of protein binding of mycophenolic acid and its glucuronide metabolite in renal transplant recipients

    Get PDF
    Mycophenolic acid (MPA), the active compound of mycophenolate mofetil (MMF), is used to prevent graft rejection in renal transplant recipients. MPA is glucuronidated to the metabolite MPAG, which exhibits enterohepatic recirculation (EHC). MPA binds for 97% and MPAG binds for 82% to plasma proteins. Low plasma albumin concentrations, impaired renal function and coadministration of cyclosporine have been reported to be associated with increased clearance of MPA. The aim of the study was to develop a population pharmacokinetic model describing the relationship between MMF dose and total MPA (tMPA), unbound MPA (fMPA), total MPAG (tMPAG) and unbound MPAG (fMPAG). In this model the correlation between pharmacokinetic parameters and renal function, plasma albumin concentrations and cotreatment with cyclosporine was quantified. tMPA, fMPA, tMPAG and fMPAG concentration–time profiles of renal transplant recipients cotreated with cyclosporine (n = 48) and tacrolimus (n = 45) were analyzed using NONMEM. A 2- and 1-compartment model were used to describe the pharmacokinetics of fMPA and fMPAG. The central compartments of fMPA and fMPAG were connected with an albumin compartment allowing competitive binding (bMPA and bMPAG). tMPA and tMPAG were modeled as the sum of the bound and unbound concentrations. EHC was modeled by transport of fMPAG to a separate gallbladder compartment. This transport was decreased in case of cyclosporine cotreatment (P < 0.001). In the model, clearance of fMPAG decreased when creatinine clearance (CrCL) was reduced (P < 0.001), and albumin concentration was correlated with the maximum number of binding sites available for MPA and MPAG (P < 0.001). In patients with impaired renal function cotreated with cyclosporine the model adequately described that increasing fMPAG concentrations decreased tMPA AUC due to displacement of MPA from its binding sites. The accumulated MPAG could also be reconverted to MPA by the EHC, which caused increased tMPA AUC in patients cotreated with tacrolimus. Changes in CrCL had hardly any effect on fMPA exposure. A decrease in plasma albumin concentration from 0.6 to 0.4 mmol/l resulted in ca. 38% reduction of tMPA AUC, whereas no reduction in fMPA AUC was seen. In conclusion, a pharmacokinetic model has been developed which describes the relationship between dose and both total and free MPA exposure. The model adequately describes the influence of renal function, plasma albumin and cyclosporine co-medication on MPA exposure. Changes in protein binding due to altered renal function or plasma albumin concentrations influence tMPA exposure, whereas fMPA exposure is hardly affected

    The MOBILIZE Boston Study: Design and methods of a prospective cohort study of novel risk factors for falls in an older population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Falls are the sixth leading cause of death in elderly people in the U.S. Despite progress in understanding risk factors for falls, many suspected risk factors have not been adequately studied. Putative risk factors for falls such as pain, reductions in cerebral blood flow, somatosensory deficits, and foot disorders are poorly understood, in part because they pose measurement challenges, particularly for large observational studies.</p> <p>Methods</p> <p>The MOBILIZE Boston Study (MBS), an NIA-funded Program Project, is a prospective cohort study of a unique set of risk factors for falls in seniors in the Boston area. Using a door-to-door population-based recruitment, we have enrolled 765 persons aged 70 and older. The baseline assessment was conducted in 2 segments: a 3-hour home interview followed within 4 weeks by a 3-hour clinic examination. Measures included pain, cerebral hemodynamics, and foot disorders as well as established fall risk factors. For the falls follow-up, participants return fall calendar postcards to the research center at the end of each month. Reports of falls are followed-up with a telephone interview to assess circumstances and consequences of each fall. A second assessment is performed 18 months following baseline.</p> <p>Results</p> <p>Of the 2382 who met all eligibility criteria at the door, 1616 (67.8%) agreed to participate and were referred to the research center for further screening. The primary reason for ineligibility was inability to communicate in English. Results from the first 600 participants showed that participants are largely representative of seniors in the Boston area in terms of age, sex, race and Hispanic ethnicity. The average age of study participants was 77.9 years (s.d. 5.5) and nearly two-thirds were women. The study cohort was 78% white and 17% black. Many participants (39%) reported having fallen at least once in the year before baseline.</p> <p>Conclusion</p> <p>Our results demonstrate the feasibility of conducting comprehensive assessments, including rigorous physiologic measurements, in a diverse population of older adults to study non-traditional risk factors for falls and disability. The MBS will provide an important new data resource for examining novel risk factors for falls and mobility problems in the older population.</p

    Modeling working memory: An interference model of complex span

    Full text link
    This article introduces a new computational model for the complex-span task, the most popular task for studying working memory. SOB-CS is a two-layer neural network that associates distributed item representations with distributed, overlapping position markers. Memory capacity limits are explained by interference from a superposition of associations. Concurrent processing interferes with memory through involuntary encoding of distractors. Free time in-between distractors is used to remove irrelevant representations, thereby reducing interference. The model accounts for benchmark findings in four areas: (1) effects of processing pace, processing difficulty, and number of processing steps; (2) effects of serial position and error patterns; (3) effects of different kinds of item-distractor similarity; and (4) correlations between span tasks. The model makes several new predictions in these areas, which were confirmed experimentally

    The importance of the altricial – precocial spectrum for social complexity in mammals and birds:A review

    Get PDF
    Various types of long-term stable relationships that individuals uphold, including cooperation and competition between group members, define social complexity in vertebrates. Numerous life history, physiological and cognitive traits have been shown to affect, or to be affected by, such social relationships. As such, differences in developmental modes, i.e. the ‘altricial-precocial’ spectrum, may play an important role in understanding the interspecific variation in occurrence of social interactions, but to what extent this is the case is unclear because the role of the developmental mode has not been studied directly in across-species studies of sociality. In other words, although there are studies on the effects of developmental mode on brain size, on the effects of brain size on cognition, and on the effects of cognition on social complexity, there are no studies directly investigating the link between developmental mode and social complexity. This is surprising because developmental differences play a significant role in the evolution of, for example, brain size, which is in turn considered an essential building block with respect to social complexity. Here, we compiled an overview of studies on various aspects of the complexity of social systems in altricial and precocial mammals and birds. Although systematic studies are scarce and do not allow for a quantitative comparison, we show that several forms of social relationships and cognitive abilities occur in species along the entire developmental spectrum. Based on the existing evidence it seems that differences in developmental modes play a minor role in whether or not individuals or species are able to meet the cognitive capabilities and requirements for maintaining complex social relationships. Given the scarcity of comparative studies and potential subtle differences, however, we suggest that future studies should consider developmental differences to determine whether our finding is general or whether some of the vast variation in social complexity across species can be explained by developmental mode. This would allow a more detailed assessment of the relative importance of developmental mode in the evolution of vertebrate social systems

    Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection

    Get PDF
    The potential for ischemic preconditioning to reduce infarct size was first recognized more than 30 years ago. Despite extension of the concept to ischemic postconditioning and remote ischemic conditioning and literally thousands of experimental studies in various species and models which identified a multitude of signaling steps, so far there is only a single and very recent study, which has unequivocally translated cardioprotection to improved clinical outcome as the primary endpoint in patients. Many potential reasons for this disappointing lack of clinical translation of cardioprotection have been proposed, including lack of rigor and reproducibility in preclinical studies, and poor design and conduct of clinical trials. There is, however, universal agreement that robust preclinical data are a mandatory prerequisite to initiate a meaningful clinical trial. In this context, it is disconcerting that the CAESAR consortium (Consortium for preclinicAl assESsment of cARdioprotective therapies) in a highly standardized multi-center approach of preclinical studies identified only ischemic preconditioning, but not nitrite or sildenafil, when given as adjunct to reperfusion, to reduce infarct size. However, ischemic preconditioning—due to its very nature—can only be used in elective interventions, and not in acute myocardial infarction. Therefore, better strategies to identify robust and reproducible strategies of cardioprotection, which can subsequently be tested in clinical trials must be developed. We refer to the recent guidelines for experimental models of myocardial ischemia and infarction, and aim to provide now practical guidelines to ensure rigor and reproducibility in preclinical and clinical studies on cardioprotection. In line with the above guideline, we define rigor as standardized state-of-the-art design, conduct and reporting of a study, which is then a prerequisite for reproducibility, i.e. replication of results by another laboratory when performing exactly the same experiment
    corecore