1,698 research outputs found
Provision of reinforcement in concrete solids using the generalized genetic algorithm
A generalized genetic algorithm has been developed to find the global optimal reinforcement contents for a concrete solid structure subjected to a general three-dimensional (3D) stress field. Feasible solutions were examined based on the genetic algorithm, and the heterogeneous strategy used ensures that all of the local optimal regions are searched and the most optimal reinforcement content found. The effectiveness of the proposed approach has been validated by comparing the steel contents evaluated using the present method with those obtained from other available methods. A more economic design is achieved by the proposed algorithm. The method developed provides the designer with a valuable tool for the determination of reinforcements in complicated solid concrete structures. © 2011 American Society of Civil Engineers.postprin
An exploratory study of the job satisfaction and educational needs of health care workers working in private homes for the elderly in Hong Kong
Health Services Research Fund & Health Care and Promotion Fund: Research Dissemination Reports (Series 2)published_or_final_versio
Antigenic cross-reactivity between severe acute respiratory syndrome-associated coronavirus and human coronaviruses 229E and OC43
Cross-reactivity between antibodies to different human coronaviruses (HCoVs) has not been systematically studied. By use of Western blot analysis, indirect immunofluorescence assay (IFA), and enzyme-linked immunosorbent assay (ELISA), antigenic cross-reactivity between severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) and 2 HCoVs (229E and OC43) was demonstrated in immunized animals and human serum. In 5 of 11 and 10 of 11 patients with SARS, paired serum samples showed a ≥4-fold increase in antibody titers against HCoV-229E and HCoV-OC43, respectively, by IFA. Overall, serum samples from convalescent patients who had SARS had a 1-way cross-reactivity with the 2 known HCoVs. Antigens of SARS-CoV and HCoV-OC43 were more cross-reactive than were those of SARS-CoV and HCoV-229E. © 2005 by the Infectious Diseases Society of America. All rights reserved.published_or_final_versio
Hydrogen peroxide treatment induced rectifying behavior of Aun-ZnO contact
Conversion of the Aun-ZnO contact from Ohmic to rectifying with H2 O2 pretreatment was studied systematically using I-V measurements, x-ray photoemission spectroscopy, positron annihilation spectroscopy, and deep level transient spectroscopy. H2 O2 treatment did not affect the carbon surface contamination or the EC -0.31 eV deep level, but it resulted in a significant decrease of the surface OH contamination and the formation of vacancy-type defects (Zn vacancy or vacancy cluster) close to the surface. The formation of a rectifying contact can be attributed to the reduced conductivity of the surface region due to the removal of OH and the formation of vacancy-type defects. © 2007 American Institute of Physics.published_or_final_versio
A patient with asymptomatic severe acute respiratory syndrome (SARS) and antigenemia from the 2003-2004 community outbreak of SARS in Guangzhou, China.
An asymptomatic case of severe acute respiratory syndrome (SARS) occurred early in 2004, during a community outbreak of SARS in Guangzhou, China. This was the first time that a case of asymptomatic SARS was noted in an individual with antigenemia and seroconversion. The asymptomatic case patient and the second index case patient with SARS in the 2003-2004 outbreak both worked in the same restaurant, where they served palm civets, which were found to carry SARS-associated coronaviruses. Epidemiological information and laboratory findings suggested that the findings for the patient with asymptomatic infection, together with the findings from previously reported serological analyses of handlers of wild animals and the 4 index case patients from the 2004 community outbreak, reflected a likely intermediate phase of animal-to-human transmission of infection, rather than a case of human-to-human transmission. This intermediate phase may be a critical stage for virus evolution and disease prevention.published_or_final_versio
Wettability decay in an oil-contaminated waste-mineral mixture with dry-wet cycles
The dependency of soil particle wettability on soil water content implies that soils subjected to drying-wetting cycles become wettable with wetting and water repellent with drying. While this has been demonstrated widely, the results are contradictory when water repellent soils are subjected to a sequence of cycles. Added to this, past wettability measurements were seldom done in batches of samples collected from the field at natural or dry water contents, with little appreciation that slight particle size variations, different drying-wetting histories and fabric (as required by different wettability measurement methods) may alter the results. This note presents soil particle wettability—soil water content relations by means of an index test following staged drying and wetting paths over a period of 8 months for an untreated, oil-contaminated anthropogenic soil (a mixture of slag, coal particles, fly ash and mineral particles) from Barry Docks (UK), a site formally used for oil storage, which is to be remediated and redeveloped for housing. The results revealed a decrease in the water repellency and increasing mineralization and bacterial activity with the wetting and drying cycles.postprin
The generalized 3-edge-connectivity of lexicographic product graphs
The generalized -edge-connectivity of a graph is a
generalization of the concept of edge-connectivity. The lexicographic product
of two graphs and , denoted by , is an important graph
product. In this paper, we mainly study the generalized 3-edge-connectivity of
, and get upper and lower bounds of .
Moreover, all bounds are sharp.Comment: 14 page
DNA topoisomerases participate in fragility of the oncogene RET
Fragile site breakage was previously shown to result in rearrangement of the RET oncogene, resembling the rearrangements found in thyroid cancer. Common fragile sites are specific regions of the genome with a high susceptibility to DNA breakage under conditions that partially inhibit DNA replication, and often coincide with genes deleted, amplified, or rearranged in cancer. While a substantial amount of work has been performed investigating DNA repair and cell cycle checkpoint proteins vital for maintaining stability at fragile sites, little is known about the initial events leading to DNA breakage at these sites. The purpose of this study was to investigate these initial events through the detection of aphidicolin (APH)-induced DNA breakage within the RET oncogene, in which 144 APHinduced DNA breakpoints were mapped on the nucleotide level in human thyroid cells within intron 11 of RET, the breakpoint cluster region found in patients. These breakpoints were located at or near DNA topoisomerase I and/or II predicted cleavage sites, as well as at DNA secondary structural features recognized and preferentially cleaved by DNA topoisomerases I and II. Co-treatment of thyroid cells with APH and the topoisomerase catalytic inhibitors, betulinic acid and merbarone, significantly decreased APH-induced fragile site breakage within RET intron 11 and within the common fragile site FRA3B. These data demonstrate that DNA topoisomerases I and II are involved in initiating APH-induced common fragile site breakage at RET, and may engage the recognition of DNA secondary structures formed during perturbed DNA replication
Recommended from our members
Improved Constraints on Sterile Neutrino Mixing from Disappearance Searches in the MINOS, MINOS+, Daya Bay, and Bugey-3 Experiments.
Searches for electron antineutrino, muon neutrino, and muon antineutrino disappearance driven by sterile neutrino mixing have been carried out by the Daya Bay and MINOS+ collaborations. This Letter presents the combined results of these searches, along with exclusion results from the Bugey-3 reactor experiment, framed in a minimally extended four-neutrino scenario. Significantly improved constraints on the θ_{μe} mixing angle are derived that constitute the most constraining limits to date over five orders of magnitude in the mass-squared splitting Δm_{41}^{2}, excluding the 90% C.L. sterile-neutrino parameter space allowed by the LSND and MiniBooNE observations at 90% CL_{s} for Δm_{41}^{2}<13 eV^{2}. Furthermore, the LSND and MiniBooNE 99% C.L. allowed regions are excluded at 99% CL_{s} for Δm_{41}^{2}<1.6 eV^{2}
Application of Graphene within Optoelectronic Devices and Transistors
Scientists are always yearning for new and exciting ways to unlock graphene's
true potential. However, recent reports suggest this two-dimensional material
may harbor some unique properties, making it a viable candidate for use in
optoelectronic and semiconducting devices. Whereas on one hand, graphene is
highly transparent due to its atomic thickness, the material does exhibit a
strong interaction with photons. This has clear advantages over existing
materials used in photonic devices such as Indium-based compounds. Moreover,
the material can be used to 'trap' light and alter the incident wavelength,
forming the basis of the plasmonic devices. We also highlight upon graphene's
nonlinear optical response to an applied electric field, and the phenomenon of
saturable absorption. Within the context of logical devices, graphene has no
discernible band-gap. Therefore, generating one will be of utmost importance.
Amongst many others, some existing methods to open this band-gap include
chemical doping, deformation of the honeycomb structure, or the use of carbon
nanotubes (CNTs). We shall also discuss various designs of transistors,
including those which incorporate CNTs, and others which exploit the idea of
quantum tunneling. A key advantage of the CNT transistor is that ballistic
transport occurs throughout the CNT channel, with short channel effects being
minimized. We shall also discuss recent developments of the graphene tunneling
transistor, with emphasis being placed upon its operational mechanism. Finally,
we provide perspective for incorporating graphene within high frequency
devices, which do not require a pre-defined band-gap.Comment: Due to be published in "Current Topics in Applied Spectroscopy and
the Science of Nanomaterials" - Springer (Fall 2014). (17 pages, 19 figures
- …
