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HIGHLIGHTS 1 

 We subjected an oil-contaminated waste-soil mixture to dry-wet cycles over a 2 

period of 8 months 3 

 The oil-contaminated mixture tended to water repellent with drying and 4 

wettable with wetting  5 

 Continuous dry-wet cycles made the mixture more wettable 6 

 Reasons for the wettability decay include biofilm formation and mineral 7 

precipitation 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 



3 

 

ABSTRACT 1 

 2 

The dependency of soil particle wettability on soil water content implies that soils 3 

subjected to drying-wetting cycles become wettable with wetting and water repellent 4 

with drying. While this has been demonstrated widely, the results are contradictory 5 

when water repellent soils are subjected to a sequence of cycles. Added to this, past 6 

wettability measurements were seldom done in batches of samples collected from the 7 

field at natural or dry water contents, with little appreciation that slight particle size 8 

variations, different drying-wetting histories and fabric (as required by different 9 

wettability measurement methods) may alter the results. This note presents soil 10 

particle wettability – soil water content relations by means of an index test (the Water 11 

Droplet Penetration Time) following staged drying and wetting paths over a period of 12 

8 months for an untreated, oil contaminated anthropogenic soil (a mixture of waste 13 

and mineral particles) from Barry Docks (UK), a site formally used for oil storage, 14 

which is to be remediated and redeveloped for housing. The results revealed (1) 15 

wettability decay with wetting and drying cycles possibly due to mineralization and 16 

bacterial activity and, (2) switches in wettability possibly controlled by reorientation 17 

of molecules at the air-oil interface.  18 

 19 

KEYWORDS: oil spills, soil particle wettability, dry-wet cycles 20 

 21 

 22 

 23 

 24 
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1. INTRODUCTION 1 

 2 

Oil spills impregnate soil particles with water repellent organic coatings (Roy et al., 3 

1998). Reclamation materials and soils contaminated by crude oil from Alberta’s Oil 4 

Sands developed water repellency or reduced wettability (Hunter, 2011; Quyum et al., 5 

2002). The known dependency of soil particle wettability on soil water content 6 

implies that soils become wettable with wetting and water repellent with drying. 7 

While this is well known, the results are contradictory when water repellent soils are 8 

subjected to a sequence of drying-wetting cycles. Quyum et al. (2002) reported that 9 

soil particle wettability increased with the drying-wetting cycles in infiltration tests in 10 

oil contaminated soils, while Zhang et al. (2004) reported increased soil water 11 

repellency with the cycles in repacked degraded soil. In addition, little is known 12 

whether such relation is, like wettable soils, hysteretic (with the wetting path position 13 

below the drying path) and, how it relates to the critical water content at which 14 

wettability switches. These discrepancies are frequently explained by an interplay of 15 

microbiological activity (Jex et al., 1985), organic carbon dynamics (removal, 16 

transport and deposition) (Denef et al., 2001), and molecular re-arrangements (Graber 17 

et al., 2009).  18 

Wettability measurements are frequently done in batches of samples collected from 19 

the field at a wide range of water contents (natural, air dried and oven dried), with 20 

little appreciation that variable particle size distributions, drying-wetting histories and 21 

fabric (sample preparation method) may influence the results (King, 1981; Dekker 22 

and Ritsema, 1994, 2000; de Jonge et al., 1999, 2007; Poulenard et al., 2004). There is 23 

therefore a need to conduct wettability measurements in the same samples as they dry 24 
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or wet mimicking the Soil Water Retention Curve procedure for wettable unsaturated 1 

soils.  2 

The aim of this study is to characterize the wettability behaviour (soil particle 3 

wettability versus soil water content) for an anthropogenic soil (an oil contaminated 4 

mixture of waste and mineral particles) collected from a former industrial site at Barry 5 

Docks, South Wales, United Kingdom subjected to continuous drying-wetting cycles.  6 

 7 

2. STUDY SITE AND MATERIALS 8 

 9 

The Barry Docks tank farm site (UK grid reference ST 11355 67047) is a highly 10 

heterogeneous fill of man-made materials, transported and in-situ soils. Barry Docks 11 

was until the 1970’s a coal port. The current site was in part reclaimed from to the sea 12 

and extended by tipping locally sourced materials and furnace wastes. The land has 13 

had various industrial uses, the most recent being as an oil storage facility housing an 14 

extensive tank farm. The site is soon to be regenerated by the construction of 15 

residential dwellings. An engineered gravel cap has been installed across the site to 16 

prevent contact with the oil contaminants within the soil. With depth, the soil profile 17 

comprises made-ground of slag, coal particles, fly-ash, silica and limestone particles, 18 

which in turn are underlain by estuarine alluvium. A limestone (the St. Mary’s Well 19 

Bay Formation) is the bedrock (Waters and Lawrence, 1987). The oil contaminated 20 

soil was collected from a number of locations around the site using a hand auger and 21 

trowel (Fig. 1). Samples were sealed in plastic bags to preserve the natural water 22 

content. 23 
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 1 

Figure 1: Photograph showing the oil contaminated soils underlying the engineering 2 

cap layer (bar = 10cm) 3 

 4 

The oil contaminated soils were characterised by the following: natural water content 5 

(oven drying at 105 °C), grain size distribution, mineralogy using X-ray powder 6 

diffraction (XRD) methods, specific gravity and loss on ignition test (at 400 °C) for 7 

total organic carbon content. For the specific gravity and loss on ignition tests, the 8 

measurements were conducted for three samples and the results averaged. Imaging to 9 

characterize the grain surface characteristics of representative samples were carried 10 

out using optical microscopy and environmental scanning electron microscopy 11 

(ESEM). Spot analysis using the energy dispersive X-ray analyser (SEM-EDX) was 12 

also undertaken to assist mineral identification.  13 

The general properties of the soil samples are summarized in Table 1. The soils were 14 

predominantly granular, coarse sand-sized (size 0.1-4.0 mm), with a natural water 15 
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content ranging between 16.4% and 23.0%. The specific gravity ranged between 2.48 1 

and 2.05, the lower values probably due to the presence of fly ash and coal (Kim et 2 

al., 2005). The initial total organic carbon content ranged between 6.6% and 13.9%. 3 

These values include both the oil coatings and plant matter (fine roots). X-ray 4 

diffractograms for samples B7 and B8 identify a high silica content (attributed to 5 

quartz sand grains and silicate slag materials). Samples B11 and B12, were shown to 6 

be high in calcium carbonate (sourced from the nearby limestone cliff).  B7, B8, B14, 7 

B15 were also enriched by iron phases associated with the slag component. Some 8 

secondary mineralisation was observed from the SEM images. Clays were present in 9 

residual amounts in samples B11, B12, B14, B15. Exact mineral proportions could 10 

not be established since coal fragments, a component of the samples, cannot be 11 

detected by XRD (coal does not have a crystalline structure).  12 

 13 

Table 1: Initial and final physical and chemical parameters for the WDPT tests; 14 

mineral proportions: high >50%, low <50%, residual <1% 15 

Sam

ple 

Mineral proportions Total organic carbon 

content (%)
 

Natu

ral 

water 

conte

nt 

(%) 

Speci

fic 

gravi

ty 

Quar

tz  

Calcit

e  

Magneti

te & 

Maghe

mite  

Illite  Initial 

(bulk 

materi

al)
 
 

Final 

(bulk 

materi

al) 
 

Final 

(surfa

ce 

materi

al) 
 

B7 High Resid

ual 

Low Not 

detect

ed
 

10.7 9.7 6.2 19.8 2.40 

B11 Low High Not 

detected
 

Resid

ual 

6.6 6.1 3.7 16.4 2.48 

B14 Low Low Low Resid

ual 

13.9 16.4 11.6 23.0 2.05 

 16 

To situate the waste-mineral samples in the context of other soil water repellency 17 

studies, soil particle wettability was measured in an air-dried state (after the first 18 

drying) by two index tests, its soil water repellency persistence by the Water Droplet 19 
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Penetration Time (WDPT), the degree of water repellency by the Molarity of an 1 

Ethanol Droplet (MED) and the direct measurement of the apparent contact angles via 2 

the Sessile Droplet Method (SDM). The MED is an index test that quantifies soil 3 

water repellency as the lowest ethanol concentration permitting a droplet penetration 4 

within 5 s. The SDM consists on placing a droplet of water onto a surface of soil 5 

particles by means of a syringe, and determining its contact angle by using a 6 

microscope. Table 2 shows variability in the persistence of water repellency (between 7 

moderate to extreme), but consistency in the degree of water repellency (very strong 8 

to extreme). The apparent contact angles averaged 132° for sample B6. 9 

 10 

Table 2: Wettability of the waste-mineral samples in an air dried condition (after first 11 

drying) 12 

Sample Test Measure unit Classification
c 

B7 WDPT 38 minutes Severe 

B8 MED
a
 35 mNm

-1
 Very strong - extreme 

B11 WDPT 2.6 minutes Moderate 

B12 MED 42 mNm
-1

 Very strong 

B14 WDPT 120 minutes Extreme 

B15 MED 37 mNm
-1

 Very strong - extreme 

B6 SDM
b 

132° - 
a
 The MED test involved placing droplets (80 l) of aqueous ethanol solutions of 13 

increasing concentration (and thus decreasing surface tension), and recording the 14 

concentration of the weakest solution that infiltrates the surface (within 3 seconds). 15 

Dilute ethanol solutions (1-36% ethanol) were prepared which equate to surface 16 

tension thresholds of 66.9 mNm
-1

 (1%) and 33.1 mNm
-1

 (36%). 17 
b
 The apparent contact angles may be higher; the snapshots by the SDM were 18 

conducted with an optical microscope in ‘camera’ mode within an average time of 17 19 

seconds to allow time to focus. 20 
c 
Doerr et al. (2006) 21 

                                                   22 

 23 

 24 

 25 
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3. METHODS 1 

 2 

3.1. Measurement of soil particle wettability during the drying-wetting cycles 3 

The Water Drop Penetration Time was used to measure soil particle wettability during 4 

the wetting-drying cycles. The WDPT is an index test widely used amongst soil 5 

scientists (Letey et al., 2000), enabling wide comparison with values published in the 6 

literature and measurements in wetter and drier sandy samples. However, it may 7 

change the particle surface characteristics with the dissolution of organic carbon 8 

(Zhang et al., 2004). Its infiltration times are also expected to decrease in drier 9 

samples due to a reduction in the unsaturated hydraulic conductivity, but should only 10 

present a problem for finer soils or lightly water repellent soils. The WDPT involves 11 

placing 3 de-ionized water droplets (each 80 l) with a pipette on to the sample 12 

surface and recording the times for their complete infiltration. The average infiltration 13 

time of the three droplets is taken. Water repellent soils have longer infiltration times 14 

than wettable soils.  15 

The sample preparation consisted of sieving to remove grains larger than 4 mm and 16 

consolidating in an oedometer (Bryant et al., 2007) at 50 kPa at constant water content 17 

conditions. The sample was then removed from the oedometer proving-ring and 18 

placed in a Petri dish. Liquid paraffin wax was used to fill the annulus between the 19 

sample and the Petri dish wall to provide lateral support. 20 

The procedure for the drying-wetting cycles followed that of a Soil Water Retention 21 

Curve whereby the same sample is dried or wetted in stages and pore water 22 

pressure/water content measurements conducted at equilibrium conditions (e.g. 23 

Lourenço et al., 2011). The detailed procedure, in Fig. 2, consisted on the following 24 

stages: 25 
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1) Drying or wetting – the sample was dried in the atmosphere for a period 1 

ranging between 2-3 hours, at an ambient temperature of 20°C; wetting of the 2 

sample was from water vapour (to ensure homogeneous wetting) with the 3 

sample placed on a grid on a closed box above the water for a period <8 hours; 4 

water vapour was created by submerged mist generators (Mendes et al., 2008); 5 

2) Equalization – the Petri dish was closed for a period of 48 hours to ensure 6 

water redistribution within the soil; 7 

3) Mass measurement – recording of the mass of the sample on a balance (0.01 g 8 

accuracy); 9 

4) WDPT – placement of three water droplets on the sample’s surface and 10 

recording with stop-watches the time for the three water droplets to infiltrate; 11 

to minimize drying from the sample’s surface, the droplets were placed 12 

immediately after opening the Petri dish and closing afterwards; for the drying 13 

path, the placement of the droplets may have induced local wettability 14 

reversals (the area was locally wetted followed by the whole drying of the 15 

sample), this was unavoidable and represents a disadvantage of the WDPT.    16 

 17 
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 1 

Figure 2: Testing sequence 2 

 3 

The measurements started with the samples, untreated, at their natural water contents 4 

and steps 1) to 4) were repeated until the samples had air-dried. The process was then 5 

reversed, with the samples wetted until they regained their initial masses. The water 6 

contents varied between 25% (water clogged pores with no water penetrating) and 5% 7 

(a visibly dry condition). All WDPT samples were subjected to 3 drying and wetting 8 

cycles. The total period of testing was 8 months.  9 

 10 

 11 

 12 

 13 

 14 
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4. RESULTS AND DISCUSSION 1 

 2 

4.1. Soil particle wettability – water content relations 3 

Gradual decay of wettability was observed with the cycles of drying and wetting 4 

(Table 3). Sample B7 was wettable from 20% to 17% water content, with the 5 

penetration times increasing to 38 minutes at 7% water content (Fig. 3). In the 6 

following cycles, the penetration time at the lowest water content (7%) decreased to 7 

27 minutes in the wetting path 1, 14 minutes in the drying path 2 and 5 minutes in the 8 

wetting path 2. Sample B14 revealed a similar behaviour, with the penetration time at 9 

the lowest water content (14%) decreasing from 120 minutes, in drying path 1, to 10 

nearly 25 minutes in drying path 2 (Fig. 4). Sample B11 revealed a similar trend 11 

despite the results obtained for wetting path 1, which had led to it becoming wettable 12 

at the end of drying path 1 or the start of the wetting path 1 (Fig. 5). An interpretation 13 

for this wettability switch is provided in the next section.  14 

 15 

Table 3: Wettability decay (WDPT) for samples B7, B11, B14 for each path at 10% 16 

water content 17 

Sample 
WDPT (minutes) 

Drying path 1 Wetting path 1 Drying path 2 Wetting path 2 

B7 9.0 0.7 2.3 0.8 

B11 1.8 1.1 0.5 - 

B14* - 202.7 25.0 - 

* At 14% water content 18 

 19 
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 1 

Figure 3: Relations between the water drop penetration time and water content for 2 2 

drying and wetting cycles (sample B7) 3 

 4 

Figure 4: Relations between the water drop penetration time and water content for 1 5 

drying and wetting cycle followed by 1 drying path (sample B14) 6 
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 1 

Figure 5: Relations between the water drop penetration time and water content for 1 2 

drying and wetting cycle followed by 1 drying path (sample B11) 3 

 4 

Most samples remained fully wettable for increasing ranges of soil water content. 5 

Sample B7 remained wettable from 20% to 14% water content in drying path 1, 6 

increasing from 20% to 12% in drying path 2. Sample B14 revealed a similar trend, 7 

remaining wettable from 23% to 20 % water content in drying path 1, increasing the 8 

from 23% to 17% water content in the subsequent paths. Sample B11 behaved 9 

differently, remaining in a virtually wettable condition for the same water content 10 

range in the 3 paths: 23% to 15%. 11 

In an air-dried state, soil particle wettability correlates with the total organic carbon 12 

content (Table 1). Sample B14, with the highest penetration times, had the highest 13 

initial total organic carbon content (13.9%), followed by sample B7 with 10.7% total 14 

organic carbon content, and sample B11 with 6.6% total organic carbon content. This 15 
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observed decrease in soil particle wettability with increasing total organic carbon 1 

content is in agreement with several studies (e.g. Dekker & Ritsema, 1994).  2 

Note that the start of the wetting paths were frequently at lower water contents than 3 

the end of the drying curves (the case of the wetting path 1 in samples B11 and B14). 4 

This was possibly due to a lower Relative Humidity (RH) in the closed box at the 5 

initial stages of wetting. With time, the mist generators raised RH to near saturation 6 

water vapour inducing condensation onto the sample and increasing its water content.  7 

 8 

4.2. Mineralization and microbiological activity 9 

The samples developed a series of white patches across the surface with the sequence 10 

of drying-wetting cycles. Imaging of the white patches with an optical microscope 11 

and SEM-EDX revealed the following: (1) calcite precipitates (m to mm sized) with 12 

a distinctive white colour that contrasted with the surrounding dark oil coatings (Fig. 13 

6a); (2) loose filaments crossing the pores and covering the particles and, micron 14 

sized open cylindrical structures attached to the surface of the grains (Fig. 6b). From 15 

their sizes, shapes and arrangements these structures were found to be biofilms, a 16 

mixture of microbial cells, extracellular polymeric material (Fig. 6c) produced by 17 

bacteria, and fungi. The bacteria are similar to Actimomycetes (typical soil bacteria) 18 

(Parkes & Sass, 2012). An interpretation is that the initial oil coated calcite particles 19 

may have dissolved during wetting and precipitated during drying as new carbonates 20 

(without the oil coating). The bacteria may have also contributed to the formation of 21 

the new particles (biomineralization). Microorganisms contribute towards the 22 

formation of minerals, in particular in limestone formations (Klappa, 1979; Strong et 23 

al., 1992). The long-term duration of the cycles (8 months) may have also played a 24 
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role, allowing sufficient time for the biofilm growth, together with the elevated 1 

temperature created by the mist generators during the wetting stages. 2 

The total organic carbon content was used to establish whether the observed 3 

whitening was due to the loss of the oil coatings during the drying-wetting cycles. 4 

After the dry-wet cycles, samples were collected from the bulk material of the 5 

samples (below the surface) and also the surface material (that had whitened) for loss 6 

on ignition tests. In comparison with the initial total organic carbon contents, the 7 

results showed a greater decrease in the total organic carbon at the surface than in the 8 

bulk material (Table 1). This could have been due to the physical washing of organic 9 

carbon from the surface (during the WDPT tests and when the sample achieved full 10 

saturation) and degradation of the organic carbon by the microbial activity. McKenna 11 

et al. 2002 showed that Actimomycetes ameliorate soil water repellency. 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 
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(a) 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 
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(b) 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 
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(c) 1 

2 
Figure 6: SEM images showing the formation of the new surface) General view of 3 

sample surface with white patches of calcite, b) Fungal filaments formed on a particle 4 

surface, c) continuous film of extracellular polymeric substances (arrow) wrapping 5 

the grains 6 

 7 

Distinct mechanisms for the wettability decay are proposed. (1) The mineralization at 8 

the surface and formation of biofilms suggests that a new discontinuous surface made 9 

of clean minerals and microorganisms was created on top of the oily coatings. 10 

Consequently, the penetration times decreased since the new surface is not 11 

contaminated with water repellent substances. The decrease in the total organic 12 

carbon content at the surface of the sample may have also contributed to the increased 13 

wettability. (2) Since no visible changes occurred to the surface of the samples, we 14 
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hypothesise that the thresholds observed in the WDPT data in wetting path 1 of 1 

sample B11 arise from behaviour at the molecular level, and may be attributed to re-2 

orientation of molecules at the air-oil interfaces (Cheng et al., 2009). In very general 3 

terms, some of the molecules that populate the air-oil interfaces are wettable at one 4 

end and water repellent at the other (Shaw, 1992). When these molecules are oriented 5 

with the water repellent end pointing away from the surface, such a configuration 6 

makes the oil coated grains water repellent. In the opposite configuration the wettable 7 

ends of the molecules are exposed to the atmosphere rendering the oil coated grains 8 

wettable (the configuration may thus be influenced by the changing nature of the 9 

surface to which the molecules adsorb). (3) Other factors may have contributed to the 10 

hysteresis in the drying and wetting paths: differences in the advancing and receding 11 

contact angles (Bachman et al., 2006); hydraulic hysteresis, as in wettable soils, due 12 

to the emptying and filling of ink-bottle pores (Wheeler et al., 2003); microstructural 13 

changes (Monroy et al., 2009). The tendency to wettable with drying-wetting cycles 14 

agrees with previous ESEM observations in wettable micron-sized silica spheres 15 

(Lourenço et al., 2012). 16 

 17 

5. CONCLUSIONS 18 

 19 

Soil particle wettability measurements in an oil-contaminated waste-mineral mixture 20 

revealed wettability decay with wetting and drying cycles. It is thought the wettability 21 

decay can be attributed to mineralization of the surface with calcite and biofilm 22 

formation. Wettability switches were observed and probably controlled by 23 

reorientation of molecules at the air-oil interface. The results highlight the dynamic 24 

nature of soil particle wettability and suggest that it is likely to gain in significance in 25 
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the future extreme climate change scenarios. The results have applications within the 1 

built and natural environment: (1) In Brownfield sites with oil contamination, they 2 

highlight the importance of remediating the ground so that water repellency does not 3 

develop after dry weather spells, or in the case of dry climates, so that a permanent 4 

water repellent condition is avoided. (2) The re-use of oil contaminated soils per se or 5 

mixed with wettable materials (in fills for instance) is not advisable since it may lead 6 

to preferential flow through the wettable areas, and ultimately piping. (3) The 7 

increased wettability following wetting and drying cycles due to the precipitation of 8 

carbonates and bacterial activity observed here suggests that this phenomenon can 9 

occur at other sites with limestone geology.  10 

 11 
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