18 research outputs found

    Self-assembled hydrogel fibers for sensing the multi-compartment intracellular milieu

    Get PDF
    Targeted delivery of drugs and sensors into cells is an attractive technology with both medical and scientific applications. Existing delivery vehicles are generally limited by the complexity of their design, dependence on active transport, and inability to function within cellular compartments. Here, we developed self-assembled nanofibrous hydrogel fibers using a biologically inert, low-molecular-weight amphiphile. Self-assembled nanofibrous hydrogels offer unique physical/mechanical properties and can easily be loaded with a diverse range of payloads. Unlike commercially available E. coli membrane particles covalently bound to the pH reporting dye pHrodo, pHrodo encapsulated in self-assembled hydrogel-fibers internalizes into macrophages at both physiologic (37°C) and sub-physiologic (4°C) temperatures through an energy-independent, passive process. Unlike dye alone or pHrodo complexed to E. coli, pHrodo-SAFs report pH in both the cytoplasm and phagosomes, as well the nucleus. This new class of materials should be useful for next-generation sensing of the intracellular milieu

    Phagocytosis depends on TRPV2-mediated calcium influx and requires TRPV2 in lipids rafts: alteration in macrophages from patients with cystic fibrosis.

    Get PDF
    Whereas many phagocytosis steps involve ionic fluxes, the underlying ion channels remain poorly defined. As reported in mice, the calcium conducting TRPV2 channel impacts the phagocytic process. Macrophage phagocytosis is critical for defense against pathogens. In cystic fibrosis (CF), macrophages have lost their capacity to act as suppressor cells and thus play a significant role in the initiating stages leading to chronic inflammation/infection. In a previous study, we demonstrated that impaired function of CF macrophages is due to a deficient phagocytosis. The aim of the present study was to investigate TRPV2 role in the phagocytosis capacity of healthy primary human macrophage by studying its activity, its membrane localization and its recruitment in lipid rafts. In primary human macrophages, we showed that P. aeruginosa recruits TRPV2 channels at the cell surface and induced a calcium influx required for bacterial phagocytosis. We presently demonstrate that to be functional and play a role in phagocytosis, TRPV2 might require a preferential localization in lipid rafts. Furthermore, CF macrophage displays a perturbed calcium homeostasis due to a defect in TRPV2. In this context, deregulated TRPV2-signaling in CF macrophages could explain their defective phagocytosis capacity that contribute to the maintenance of chronic infection

    A Hepatic Protein, Fetuin-A, Occupies a Protective Role in Lethal Systemic Inflammation

    Get PDF
    A liver-derived protein, fetuin-A, was first purified from calf fetal serum in 1944, but its potential role in lethal systemic inflammation was previously unknown. This study aims to delineate the molecular mechanisms underlying the regulation of hepatic fetuin-A expression during lethal systemic inflammation (LSI), and investigated whether alterations of fetuin-A levels affect animal survival, and influence systemic accumulation of a late mediator, HMGB1.LSI was induced by endotoxemia or cecal ligation and puncture (CLP) in fetuin-A knock-out or wild-type mice, and animal survival rates were compared. Murine peritoneal macrophages were challenged with exogenous (endotoxin) or endogenous (IFN-γ) stimuli in the absence or presence of fetuin-A, and HMGB1 expression and release was assessed. Circulating fetuin-A levels were decreased in a time-dependent manner, starting between 26 h, reaching a nadir around 24-48 h, and returning towards base-line approximately 72 h post onset of endotoxemia or sepsis. These dynamic changes were mirrored by an early cytokine IFN-γ-mediated inhibition (up to 50-70%) of hepatic fetuin-A expression. Disruption of fetuin-A expression rendered animals more susceptible to LSI, whereas supplementation of fetuin-A (20-100 mg/kg) dose-dependently increased animal survival rates. The protection was associated with a significant reduction in systemic HMGB1 accumulation in vivo, and parallel inhibition of IFN-γ- or LPS-induced HMGB1 release in vitro.These experimental data suggest that fetuin-A is protective against lethal systemic inflammation partly by inhibiting active HMGB1 release

    Understanding protein kinase CK2 mis-regulation upon F508del CFTR expression

    Get PDF
    We review areas of overlap between nucleoside diphosphate kinase (NDPK; nm23) and two proteins manifesting an equivalent diversity of action, each with many thousands of publications. The first is a constitutively active protein kinase, CK2 (formerly casein kinase 2), that includes NDPK amongst its hundreds of targets. The second is an enigmatic member of the ATP-binding cassette (ABC) family of membrane pumps that normally hydrolyse ATP to transport substrates. Yet our unusual family member (ABCC7) is not a pump but, uniquely, acts as a regulated anion channel. ABCC7 is the cystic fibrosis transmembrane conductance regulator (CFTR), and we discuss the highly prevalent CFTR mutation (F508del CFTR) in terms of the uncertainties surrounding the molecular basis of cystic fibrosis that cloud approaches to corrective therapy. Using lysates from cells stably expressing either wild-type or F508del CFTR, incubated with the CK2 substrate GTP, we show that the phosphoproteome of F508del CFTR-expressing cells both differs from wild-type CFTR-expressing cells and is significantly enhanced in intensity by ∼1.5-fold (p < 0.05, paired t test with Bonferroni correction, n = 4). Phosphorylation is about 50% attenuated with a specific CK2 inhibitor. We propose that a new function may exist for the CFTR region that is commonly mutated, noting that its sequence (PGTIKENIIF508GVSYDEYRYR) is not only highly conserved within the C sub-family of ABC proteins but also a related sequence is found in NDPK. We conclude that a latent path may exist between mutation of this conserved sequence, CK2 hyperactivity and disease pathogenesis that might also explain the heterozygote advantage for the common F508del CFTR mutant
    corecore