172 research outputs found

    Semi-analytical guidance algorithm for autonomous close approach to non-cooperative low-gravity targets

    Get PDF
    An adaptive guidance algorithm for close approach to and precision landing on uncooperative low-gravity objects (e.g. asteroids) is proposed. The trajectory, updated by means of a minimum fuel optimal control problem solving, is expressed in a polynomial form of minimum order to satisfy a set of boundary constraints from initial and final states and attitude requirements. Optimal guidance computation, achieved with a simple two-stage compass search, is reduced to the determination of three parameters, time-of-flight, initial thrust magnitude and initial thrust angle, according to additional constraints due to actual spacecraft architecture. A NEA landing mission case is analyzed

    Implicit Extended Kalman Filter for Optical Terrain Relative Navigation Using Delayed Measurements

    Get PDF
    The exploration of celestial bodies such as the Moon, Mars, or even smaller ones such as comets and asteroids, is the next frontier of space exploration. One of the most interesting and attractive purposes from the scientific point of view in this field, is the capability for a spacecraft to land on such bodies. Monocular cameras are widely adopted to perform this task due to their low cost and system complexity. Nevertheless, image-based algorithms for motion estimation range across different scales of complexities and computational loads. In this paper, a method to perform relative (or local) terrain navigation using frame-to-frame features correspondences and altimeter measurements is presented. The proposed image-based approach relies on the implementation of the implicit extended Kalman filter, which works using nonlinear dynamic models and corrections from measurements that are implicit functions of the state variables. In particular, here, the epipolar constraint, which is a geometric relationship between the feature point position vectors and the camera translation vector, is employed as the implicit measurement fused with altimeter updates. In realistic applications, the image processing routines require a certain amount of time to be executed. For this reason, the presented navigation system entails a fast cycle using altimeter measurements and a slow cycle with image-based updates. Moreover, the intrinsic delay of the feature matching execution is taken into account using a modified extrapolation method

    C6orf10 low-frequency and rare variants in italian multiple sclerosis patients

    Get PDF
    In light of the complex nature of multiple sclerosis (MS) and the recently estimated contribution of low-frequency variants into disease, decoding its genetic risk components requires novel variant prioritization strategies. We selected, by reviewing MS Genome Wide Association Studies (GWAS), 107 candidate loci marked by intragenic single nucleotide polymorphisms (SNPs) with a remarkable association (p-value <= 5 x 10(-6)). A whole exome sequencing (WES)-based pilot study of SNPs with minor allele frequency (MAF) <= 0.04, conducted in three Italian families, revealed 15 exonic low-frequency SNPs with affected parent-child transmission. These variants were detected in 65/120 Italian unrelated MS patients, also in combination (22 patients). Compared with databases (controls gnomAD, dbSNP150, ExAC, Tuscany-1000 Genome), the allelic frequencies of C6orf10 rs 16870005 and IL2RA rs12722600 were significantly higher (i.e., controls gnomAD, p = 9.89 x 10(-7) and p < 1 x 10(-20)). TET2 rs61744960 and TRAF3 rs138943371 frequencies were also significantly higher, except in Tuscany-1000 Genome. Interestingly, the association of C6orf10 rs16870005 (Ala431Thr) with MS did not depend on its linkage disequilibrium with the HLA-DRB1 locus. Sequencing in the MS cohort of the C6orf10 3' region revealed 14 rare mutations (10 not previously reported). Four variants were null, and significantly more frequent than in the databases. Further, the C6orf10 rare variants were observed in combinations, both intra-locus and with other low-frequency SNPs. The C6orf10 Ser389Xfr was found homozygous in a patient with early onset of the MS. Taking into account the potentially functional impact of the identified exonic variants, their expression in combination at the protein level could provide functional insights in the heterogeneous pathogenetic mechanisms contributing to MS.In light of the complex nature of multiple sclerosis (MS) and the recently estimated contribution of low-frequency variants into disease, decoding its genetic risk components requires novel variant prioritization strategies. We selected, by reviewing MS Genome Wide Association Studies (GWAS), 107 candidate loci marked by intragenic single nucleotide polymorphisms (SNPs) with a remarkable association (p-value ≤ 5 × 10−6). A whole exome sequencing (WES)-based pilot study of SNPs with minor allele frequency (MAF) ≤ 0.04, conducted in three Italian families, revealed 15 exonic low-frequency SNPs with affected parent-child transmission. These variants were detected in 65/120 Italian unrelated MS patients, also in combination (22 patients). Compared with databases (controls gnomAD, dbSNP150, ExAC, Tuscany-1000 Genome), the allelic frequencies of C6orf10 rs16870005 and IL2RA rs12722600 were significantly higher (i.e., controls gnomAD, p = 9.89 × 10−7 and p < 1 × 10−20). TET2 rs61744960 and TRAF3 rs138943371 frequencies were also significantly higher, except in Tuscany-1000 Genome. Interestingly, the association of C6orf10 rs16870005 (Ala431Thr) with MS did not depend on its linkage disequilibrium with the HLA-DRB1 locus. Sequencing in the MS cohort of the C6orf10 3′ region revealed 14 rare mutations (10 not previously reported). Four variants were null, and significantly more frequent than in the databases. Further, the C6orf10 rare variants were observed in combinations, both intra-locus and with other low-frequency SNPs. The C6orf10 Ser389Xfr was found homozygous in a patient with early onset of the MS. Taking into account the potentially functional impact of the identified exonic variants, their expression in combination at the protein level could provide functional insights in the heterogeneous pathogenetic mechanisms contributing to MS

    F9 Missense mutations impairing factor ix activation are associated with pleiotropic plasma phenotypes

    Get PDF
    Background: Circulating dysfunctional factor IX (FIX) might modulate distribution of infused FIX in haemophilia B (HB) patients. Recurrent substitutions at FIX activation sites (R191-R226, &gt;300 patients) are associated with variable FIX activity and antigen (FIXag) levels. Objectives: To investigate i) expression of a complete panel of missense mutations at FIX activation sites and ii) contribution of F9 genotypes on the FIX pharmacokinetics (PK). Methods: FIXag and activity assays in plasma and after recombinant expression of FIX variants. Analysis of infused FIX PK parameters in patients (n=30), mostly enrolled in the F9 Genotype and PK HB Italian Study (GePKHIS; EudraCT ID2017-003902-42). Results: The variable FIXag amounts and good relation between biosynthesis and activity of multiple R191 variants result in graded moderate-to-mild severity of the R191C&gt;L&gt;P&gt;H substitutions. Recombinant expression may predict the absence in the HB mutation database of the benign R191Q/W/K and R226K substitutions. Equivalent changes at R191/R226 produced higher FIXag levels for R226Q/W/P substitutions, as also observed in p.R226W female carrier plasma. PK analysis in patients suggested that infused FIX Alpha distribution and Beta elimination phases positively correlated with endogenous FIXag levels. Mean residence time was particularly prolonged (79.4 hrs, 95% CI 44.3-114.5) in patients (n=7) with the R191/R226 substitutions, which in regression analysis were independent predictors (β coefficient 0.699, p=0.004) of Beta half-life, potentially prolonged by the increasing over time ratio between endogenous and infused FIX. Conclusions: FIXag levels and specific features of the dysfunctional R191/R226 variants may exert pleiotropic effects both on HB patients’ phenotypes and substitutive treatment

    MEK1/2 regulate normal BCR and ABL1 tumor-suppressor functions to dictate ATO response in TKI-resistant Ph+ leukemia

    Get PDF
    Resistance to tyrosine kinase inhibitors (TKIs) remains a clinical challenge in Ph-positive variants of chronic myeloid leukemia. We provide mechanistic insights into a previously undisclosed MEK1/2/BCR::ABL1/BCR/ABL1-driven signaling loop that may determine the efficacy of arsenic trioxide (ATO) in TKI-resistant leukemic patients. We find that activated MEK1/2 assemble into a pentameric complex with BCR::ABL1, BCR and ABL1 to induce phosphorylation of BCR and BCR::ABL1 at Tyr360 and Tyr177, and ABL1, at Thr735 and Tyr412 residues thus provoking loss of BCR's tumor-suppression functions, enhanced oncogenic activity of BCR::ABL1, cytoplasmic retention of ABL1 and consequently drug resistance. Coherently, pharmacological blockade of MEK1/2 induces dissociation of the pentameric MEK1/2/BCR::ABL1/BCR/ABL1 complex and causes a concurrent BCRY360/Y177, BCR::ABL1Y360/Y177 and cytoplasmic ABL1Y412/T735 dephosphorylation thereby provoking the rescue of the BCR's anti-oncogenic activities, nuclear accumulation of ABL1 with tumor-suppressive functions and consequently, growth inhibition of the leukemic cells and an ATO sensitization via BCR-MYC and ABL1-p73 signaling axes activation. Additionally, the allosteric activation of nuclear ABL1 was consistently found to enhance the anti-leukemic effects of the MEK1/2 inhibitor Mirdametinib, which when combined with ATO, significantly prolonged the survival of mice bearing BCR::ABL1-T315I-induced leukemia. These findings highlight the therapeutic potential of MEK1/2-inhibitors/ATO combination for the treatment of TKI-resistant leukemia

    Dasatinib-Blinatumomab for Ph-Positive Acute Lymphoblastic Leukemia in Adults

    Get PDF
    BACKGROUND: Outcomes in patients with Philadelphia chromosome (Ph)-positive acute lymphoblastic leukemia (ALL) have improved with the use of tyrosine kinase inhibitors. Molecular remission is a primary goal of treatment.METHODS: We conducted a phase 2 single-group trial of first-line therapy in adults with newly diagnosed Ph-positive ALL (with no upper age limit). Dasatinib plus glucocorticoids were administered, followed by two cycles of blinatumomab. The primary end point was a sustained molecular response in the bone marrow after this treatment.RESULTS: Of the 63 patients (median age, 54 years; range, 24 to 82) who were enrolled, a complete remission was observed in 98%. At the end of dasatinib induction therapy (day 85), 29% of the patients had a molecular response, and this percentage increased to 60% after two cycles of blinatumomab; the percentage of patients with a molecular response increased further after additional blinatumomab cycles. At a median follow-up of 18 months, overall survival was 95% and disease-free survival was 88%; disease-free survival was lower among patients who had an IKZF1 deletion plus additional genetic aberrations (CDKN2A or CDKN2B, PAX5, or both [i.e., IKZF1 plus]). ABL1 mutations were detected in 6 patients who had increased minimal residual disease during induction therapy, and all these mutations were cleared by blinatumomab. Six relapses occurred. Overall, 21 adverse events of grade 3 or higher were recorded. A total of 24 patients received a stem-cell allograft, and 1 death was related to transplantation (4%).CONCLUSIONS: A chemotherapy-free induction and consolidation first-line treatment with dasatinib and blinatumomab that was based on a targeted and immunotherapeutic strategy was associated with high incidences of molecular response and survival and few toxic effects of grade 3 or higher in adults with Ph-positive ALL. (Funded by Associazione Italiana per la Ricerca sul Cancro and others; GIMEMA LAL2116 D-ALBA EudraCT number, 2016-001083-11; ClinicalTrials.gov number, NCT02744768.)
    corecore