12,723 research outputs found

    Some NASA contributions to the use of plasma jet technology in chemical processing

    Get PDF
    NASA contributions to use of plasma jet technology in chemical processin

    Space-Varying Coefficient Models for Brain Imaging

    Get PDF
    The methodological development and the application in this paper originate from diffusion tensor imaging (DTI), a powerful nuclear magnetic resonance technique enabling diagnosis and monitoring of several diseases as well as reconstruction of neural pathways. We reformulate the current analysis framework of separate voxelwise regressions as a 3d space-varying coefficient model (VCM) for the entire set of DTI images recorded on a 3d grid of voxels. Hence by allowing to borrow strength from spatially adjacent voxels, to smooth noisy observations, and to estimate diffusion tensors at any location within the brain, the three-step cascade of standard data processing is overcome simultaneously. We conceptualize two VCM variants based on B-spline basis functions: a full tensor product approach and a sequential approximation, rendering the VCM numerically and computationally feasible even for the huge dimension of the joint model in a realistic setup. A simulation study shows that both approaches outperform the standard method of voxelwise regressions with subsequent regularization. Due to major efficacy, we apply the sequential method to a clinical DTI data set and demonstrate the inherent ability of increasing the rigid grid resolution by evaluating the incorporated basis functions at intermediate points. In conclusion, the suggested fitting methods clearly improve the current state-of-the-art, but ameloriation of local adaptivity remains desirable

    Convective line shifts for the Gaia RVS from the CIFIST 3D model atmosphere grid

    Get PDF
    To derive space velocities of stars along the line of sight from wavelength shifts in stellar spectra requires accounting for a number of second-order effects. For most stars, gravitational redshifts, convective blueshifts, and transverse stellar motion are the dominant contributors. We provide theoretical corrections for the net velocity shifts due to convection expected for the measurements from the Gaia Radial Velocity Spectrometer (RVS). We used a set of three-dimensional time-dependent simulations of stellar surface convection computed with CO5BOLD to calculate spectra of late-type stars in the Gaia RVS range and to infer the net velocity offset that convective motions will induce in radial velocities derived by cross-correlation. The net velocity shifts derived by cross-correlation depend both on the wavelength range and spectral resolution of the observations. Convective shifts for Gaia RVS observations are less than 0.1 km/s for late-K-type stars, and they increase with stellar mass, reaching about 0.3 km/s or more for early F-type dwarfs. This tendency is the result of an increase with effective temperature in both temperature and velocity fluctuations in the line-forming region. Our simulations also indicate that the net RVS convective shifts can be positive (i.e. redshifts) in some cases. Overall, the blueshifts weaken slightly with increasing surface gravity, and are enhanced at low metallicity. Gravitational redshifts amount up to 0.7 km/s and dominate convective blueshifts for dwarfs, but become much weaker for giants.Comment: 13 pages, to appear in A&A; model fluxes available from ftp://leda.as.utexas.edu/pub/callende/Gaia3D and soon from CD

    Accounting for Convective Blue-Shifts in the Determination of Absolute Stellar Radial Velocities

    Full text link
    For late-type non-active stars, gravitational redshifts and convective blueshifts are the main source of biases in the determination of radial velocities. If ignored, these effects can introduce systematic errors of the order of ~ 0.5 km/s. We demonstrate that three-dimensional hydrodynamical simulations of solar surface convection can be used to predict the convective blue-shifts of weak spectral lines in solar-like stars to ~ 0.070 km/s. Using accurate trigonometric parallaxes and stellar evolution models, the gravitational redshifts can be constrained with a similar uncertainty, leading to absolute radial velocities accurate to better than ~ 0.1 km/s.Comment: To appear in the proceedings of the Joint Discussion 10, IAU General Assembly, Rio de Janeiro, August 10-11, 200

    Gas turbine ceramic-coated-vane concept with convection-cooled porous metal core

    Get PDF
    Analysis and flow experiments on a ceramic-coated-porous-metal vane concept indicated the feasibility, from a heat transfer standpoint, of operating in a high-temperature (2500 F) gas turbine cascade facility. The heat transfer and pressure drop calculations provided a basis for selecting the ceramic layer thickness (to 0.08 in.), which was found to be the dominant factor in the overall heat transfer coefficient. Also an approximate analysis of the heat transfer in the vane trailing edge revealed that with trailing-edge ejection the ceramic thickness could be reduced to (0.01 in.) in this portion of the vane

    The Three-Nucleon System Near the N-d Threshold

    Get PDF
    The three-nucleon system is studied at energies a few hundred keV above the N-d threshold. Measurements of the tensor analyzing powers T20T_{20} and T21T_{21} for p-d elastic scattering at Ec.m.=432E_{c.m.}=432 keV are presented together with the corresponding theoretical predictions. The calculations are extended to very low energies since they are useful for extracting the p-d scattering lengths from the experimental data. The interaction considered here is the Argonne V18 potential plus the Urbana three-nucleon potential. The calculation of the asymptotic D- to S-state ratio for 3^3H and 3^3He, for which recent experimental results are available, is also presented.Comment: Latex, 11 pages, 2 figures, to be published in Phy.Lett.

    On a generalization of Jacobi's elliptic functions and the Double Sine-Gordon kink chain

    Full text link
    A generalization of Jacobi's elliptic functions is introduced as inversions of hyperelliptic integrals. We discuss the special properties of these functions, present addition theorems and give a list of indefinite integrals. As a physical application we show that periodic kink solutions (kink chains) of the double sine-Gordon model can be described in a canonical form in terms of generalized Jacobi functions.Comment: 18 pages, 9 figures, 3 table

    Ground state of a confined Yukawa plasma

    Get PDF
    The ground state of an externally confined one-component Yukawa plasma is derived analytically. In particular, the radial density profile is computed. The results agree very well with computer simulations on three-dimensional spherical Coulomb crystals. We conclude in presenting an exact equation for the density distribution for a confinement potential of arbitrary geometry.Comment: 5 pages, 4 figure

    Radio frequency pulsed-gate charge spectroscopy on coupled quantum dots

    Full text link
    Time-resolved electron dynamics in coupled quantum dots is directly observed by a pulsed-gate technique. While individual gate voltages are modulated with periodic pulse trains, average charge occupations are measured with a nearby quantum point contact as detector. A key component of our setup is a sample holder optimized for broadband radio frequency applications. Our setup can detect displacements of single electrons on time scales well below a nanosecond. Tunneling rates through individual barriers and relaxation times are obtained by using a rate equation model. We demonstrate the full characterization of a tunable double quantum dot using this technique, which could also be used for coherent charge qubit control
    corecore