586 research outputs found

    Pharmacokinetic role of protein binding of mycophenolic acid and its glucuronide metabolite in renal transplant recipients

    Get PDF
    Mycophenolic acid (MPA), the active compound of mycophenolate mofetil (MMF), is used to prevent graft rejection in renal transplant recipients. MPA is glucuronidated to the metabolite MPAG, which exhibits enterohepatic recirculation (EHC). MPA binds for 97% and MPAG binds for 82% to plasma proteins. Low plasma albumin concentrations, impaired renal function and coadministration of cyclosporine have been reported to be associated with increased clearance of MPA. The aim of the study was to develop a population pharmacokinetic model describing the relationship between MMF dose and total MPA (tMPA), unbound MPA (fMPA), total MPAG (tMPAG) and unbound MPAG (fMPAG). In this model the correlation between pharmacokinetic parameters and renal function, plasma albumin concentrations and cotreatment with cyclosporine was quantified. tMPA, fMPA, tMPAG and fMPAG concentration–time profiles of renal transplant recipients cotreated with cyclosporine (n = 48) and tacrolimus (n = 45) were analyzed using NONMEM. A 2- and 1-compartment model were used to describe the pharmacokinetics of fMPA and fMPAG. The central compartments of fMPA and fMPAG were connected with an albumin compartment allowing competitive binding (bMPA and bMPAG). tMPA and tMPAG were modeled as the sum of the bound and unbound concentrations. EHC was modeled by transport of fMPAG to a separate gallbladder compartment. This transport was decreased in case of cyclosporine cotreatment (P < 0.001). In the model, clearance of fMPAG decreased when creatinine clearance (CrCL) was reduced (P < 0.001), and albumin concentration was correlated with the maximum number of binding sites available for MPA and MPAG (P < 0.001). In patients with impaired renal function cotreated with cyclosporine the model adequately described that increasing fMPAG concentrations decreased tMPA AUC due to displacement of MPA from its binding sites. The accumulated MPAG could also be reconverted to MPA by the EHC, which caused increased tMPA AUC in patients cotreated with tacrolimus. Changes in CrCL had hardly any effect on fMPA exposure. A decrease in plasma albumin concentration from 0.6 to 0.4 mmol/l resulted in ca. 38% reduction of tMPA AUC, whereas no reduction in fMPA AUC was seen. In conclusion, a pharmacokinetic model has been developed which describes the relationship between dose and both total and free MPA exposure. The model adequately describes the influence of renal function, plasma albumin and cyclosporine co-medication on MPA exposure. Changes in protein binding due to altered renal function or plasma albumin concentrations influence tMPA exposure, whereas fMPA exposure is hardly affected

    Consequentialism and Virtue

    Get PDF
    We examine the following consequentialist view of virtue: a trait is a virtue if and only if it has good consequences in some relevant way. We highlight some motivations for this basic account, and offer twelve choice points for filling it out. Next, we explicate Julia Driver’s consequentialist view of virtue in reference to these choice points, and we canvass its merits and demerits. Subsequently, we consider three suggestions that aim to increase the plausibility of her position, and critically analyze them. We conclude that one of those proposed revisions would improve her account. NOTE: I will self-archive the paper after the 24 month embargo period ends. If you want a copy, just email me

    PuLSE:Quality control and quantification of peptide sequences explored by phage display libraries

    Get PDF
    The design of highly diverse phage display libraries is based on assumption that DNA bases are incorporated at similar rates within the randomized sequence. As library complexity increases and expected copy numbers of unique sequences decrease, the exploration of library space becomes sparser and the presence of truly random sequences becomes critical. We present the program PuLSE (Phage Library Sequence Evaluation) as a tool for assessing randomness and therefore diversity of phage display libraries. PuLSE runs on a collection of sequence reads in the fastq file format and generates tables profiling the library in terms of unique DNA sequence counts and positions, translated peptide sequences, and normalized 'expected' occurrences from base to residue codon frequencies. The output allows at-a-glance quantitative quality control of a phage library in terms of sequence coverage both at the DNA base and translated protein residue level, which has been missing from toolsets and literature. The open source program PuLSE is available in two formats, a C++ source code package for compilation and integration into existing bioinformatics pipelines and precompiled binaries for ease of use

    Effects of YM155 on survivin levels and viability in neuroblastoma cells with acquired drug resistance

    Get PDF
    Resistance formation after initial therapy response (acquired resistance) is common in high-risk neuroblastoma patients. YM155 is a drug candidate that was introduced as a survivin suppressant. This mechanism was later challenged, and DNA damage induction and Mcl-1 depletion were suggested instead. Here we investigated the efficacy and mechanism of action of YM155 in neuroblastoma cells with acquired drug resistance. The efficacy of YM155 was determined in neuroblastoma cell lines and their sublines with acquired resistance to clinically relevant drugs. Survivin levels, Mcl-1 levels, and DNA damage formation were determined in response to YM155. RNAi-mediated depletion of survivin, Mcl-1, and p53 was performed to investigate their roles during YM155 treatment. Clinical YM155 concentrations affected the viability of drug-resistant neuroblastoma cells through survivin depletion and p53 activation. MDM2 inhibitor-induced p53 activation further enhanced YM155 activity. Loss of p53 function generally affected anti-neuroblastoma approaches targeting survivin. Upregulation of ABCB1 (causes YM155 efflux) and downregulation of SLC35F2 (causes YM155 uptake) mediated YM155-specific resistance. YM155-adapted cells displayed increased ABCB1 levels, decreased SLC35F2 levels, and a p53 mutation. YM155-adapted neuroblastoma cells were also characterized by decreased sensitivity to RNAi-mediated survivin depletion, further confirming survivin as a critical YM155 target in neuroblastoma. In conclusion, YM155 targets survivin in neuroblastoma. Furthermore, survivin is a promising therapeutic target for p53 wild-type neuroblastomas after resistance acquisition (neuroblastomas are rarely p53-mutated), potentially in combination with p53 activators. In addition, we show that the adaptation of cancer cells to molecular-targeted anticancer drugs is an effective strategy to elucidate a drug's mechanism of action

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty

    Search for the standard model Higgs boson at LEP

    Get PDF

    The application of sediment fingerprinting to floodplain and lake sediment cores: assumptions and uncertainties evaluated through case studies in the Nene Basin, UK

    Get PDF
    Purpose: Fine sediment has been shown to be a major cause of the degradation of lakes and rivers and, as a result, research has been directed towards the understanding of fine sediment dynamics and the minimisation of sediment inputs. The use of tracers within a sediment fingerprinting framework has become a heavily used technique to investigate the sources of fine sediment pressures. When combined with the use of historically deposited sediment, the technique provides the opportunity to reconstruct past changes to the environment. However, alterations to tracer signatures during sediment transport and storage are a major potential source of uncertainty associated with tracer use. At present, few studies have quantified the uncertainties associated with tracer use. Materials and methods: This paper investigated uncertainty by determining the differences between sediment provenance predictions obtained using lithogenic radionuclide, geochemical and mineral magnetic signatures when fingerprinting lake and floodplain sedimentary deposits. It also investigated the potential causes of the observed differences. Results and discussion: A reservoir core was fingerprinted with the least uncertainty, with tracer group predictions ∌28 % apart and a consistent down-core trend in changing sediment provenance produced. When fingerprinting an on-line lake core and four floodplain cores, differences between tracer group predictions were as large as 100 %; the down-core trends in changing sediment provenance were also different. The differences between tracer group predictions could be attributed to the organic matter content and particle size of the sediment. There was also evidence of the in-growth of bacterially derived magnetite and chemical dissolution affecting the preservation of tracer signatures. Simple data corrections for sediment organic matter content and particle size did not result in significantly greater agreement between the predictions of the different tracer groups. Likewise, the inclusions of weightings for tracer discriminatory efficiency and within-source variability had minimal effects on the fingerprinting results. Conclusions: This paper highlights the importance of tracer selection and the consideration of recognising tracer non-conservatism when using lake and floodplain sediment deposits to reconstruct anthropogenic changes to the environment and changing sediment dynamics. It was recommended that future research focus on the assessment of uncertainty using the artificial mixing of sediment source samples, the limitation of the fingerprinting to narrow particle size fractions and the development of specific particle size and organic matter correction factors for each tracer

    Homo-PROTACs:bivalent small-molecule dimerizers of the VHL E3 ubiquitin ligase to induce self-degradation

    Get PDF
    E3 ubiquitin ligases are key enzymes within the ubiquitin proteasome system which catalyze the ubiquitination of proteins, targeting them for proteasomal degradation. E3 ligases are gaining importance as targets to small molecules, both for direct inhibition and to be hijacked to induce the degradation of non-native neo-substrates using bivalent compounds known as PROTACs (for 'proteolysis-targeting chimeras'). We describe Homo-PROTACs as an approach to dimerize an E3 ligase to trigger its suicide-type chemical knockdown inside cells. We provide proof-of-concept of Homo-PROTACs using diverse molecules composed of two instances of a ligand for the von Hippel-Lindau (VHL) E3 ligase. The most active compound, CM11, dimerizes VHL with high avidity in vitro and induces potent, rapid and proteasome-dependent self-degradation of VHL in different cell lines, in a highly isoform-selective fashion and without triggering a hypoxic response. This approach offers a novel chemical probe for selective VHL knockdown, and demonstrates the potential for a new modality of chemical intervention on E3 ligases.Targeting the ubiquitin proteasome system to modulate protein homeostasis using small molecules has promising therapeutic potential. Here the authors describe Homo-PROTACS: small molecules that can induce the homo-dimerization of E3 ubiquitin ligases and cause their proteasome-dependent degradation
    • 

    corecore