949 research outputs found
3D geometric modelling of discontinuous fibre composites using a force-directed algorithm
A geometrical modelling scheme is presented to produce representative architectures for discontinuous fibre composites, enabling downstream modelling of mechanical properties. The model generates realistic random fibre architectures containing high filament count bundles (>3k) and high (~50%) fibre volume fractions. Fibre bundles are modelled as thin shells using a multi-dimension modelling strategy, in which fibre bundles are distributed and compacted to simulate pressure being applied from a matched mould tool. FE simulations are performed to benchmark the in-plane mechanical properties obtained from the numerical model against experimental data, with a detailed study presented to evaluate the tensile properties at various fibre volume fractions and specimen thicknesses. Tensile modulus predictions are in close agreement (less than 5% error) with experimental data at volume fractions below 45%. Ultimate tensile strength predictions are within 4.2% of the experimental data at volume fractions between 40%-55%. This is a significant improvement over existing 2D modelling approaches, as the current model offers increased levels of fidelity, capturing dominant failure mechanisms and the influence of out-of-plane fibres
Protective effect of wild Corni fructus methanolic extract against acute alcoholic liver injury in mice
Background: In Chinese folk medicine, Corni fructus (C. fructus) has traditionally been used to improve liver function, although the mechanism underlying its activity remains unclear. The aim of the present study was to evaluate the protective effects of wild C. fructus methanolic extract against acute alcoholic liver injury.Methods: Alcohol was administered to mice for three consecutive days, either alone or in combination with C. fructus methanolic extract (50, 100, or 200mg/kg body weight/d). Serum and liver tissue were collected from the animals and subjected to biochemical and histopathological analyses.Results:C. fructus significantly alleviated alcohol-induced liver injury by reducing serum alanine aminotransferase, aspartate aminotransferase, and thiobarbituric acid reactive species, inhibiting hydroxyl radicals (center dot OH), and increasing total superoxide dismutase, glutathione peroxidase, and glutathione in the liver (P<0.05). In addition, the C. fructus treatment inhibited the expression and activity of cytochrome P450 2E1 (P<0.05)Conclusions:C. fructus could be a promising natural substance for ameliorating acute alcohol-induced oxidative stress and hepatic injury.- This work was supported by the Construction Project of Shaanxi Collaborative Innovation Center (2015, Shaanxi Sci-tech University); High-End Foreign Experts Recruitment Program [Grant GDW20146100228]; and Key Construction Program of International Cooperation Base in S&T Shaanxi Province, China [Grant 2015SD0018].info:eu-repo/semantics/publishedVersio
The influences of Taiwan's generic grouping price policy on drug prices and expenditures: Evidence from analysing the consumption of the three most-used classes of cardiovascular drugs
<p>Abstract</p> <p>Background</p> <p>Controlling the growth of pharmaceutical expenditures is a major global challenge. Promotion of generic drug prescriptions or use is gaining increased support. There are substantial contextual differences in international experiences of implementing pharmaceutical policies related to generic drugs. Reporting these experiences from varied perspectives can inform future policy making. This study describes an experience of Taiwan, where patients with chronic (long-term) conditions are usually managed in hospitals and drugs are provided in this setting with costs reimbursed through the National Health Insurance (NHI). It investigates the effects of Taiwan's reimbursement rate adjustment based on chemical generic grouping in 2001. This research also demonstrates the use of micro-level longitudinal data to generate policy-relevant information. The research can be used to improve efficiency of health care resource use.</p> <p>Methods</p> <p>We chose the three most-used classes of cardiovascular drugs for this investigation: beta blocking agents, calcium channel blockers mainly with vascular effects, and plain ACE inhibitors. For each drug class, we investigated changes in daily expense, consumption volume, and total expenditures from a pre-action period to a corresponding post-action period. We compared an exposure or "intervention" group of patients targeted by the action with a comparisonor "control" group of patients not targeted by the action. The data sources are a longitudinal database for 200,000 NHI enrolees, corresponding NHI registration data of health care facilities, and an archive recording all historical data on the reimbursement rates of drugs covered by the NHI. We adopted a fixed effects linear regression model to control for unobserved heterogeneity among patient-hospital groups. Additional descriptive statistics were applied to examine whether any inappropriate consumption of drugs in the three classes existed.</p> <p>Results</p> <p>The daily drug expense significantly decreased from the pre-action period to the post-action period for the exposure group. The average magnitudes of the decreases for the three classes of drugs mentioned above were 14.8%, 5.8% and 5.8%, respectively. In contrast, there was no reduction for the comparison group. The number of days of the prescription increased significantly from the pre- to the post-action period for both exposure and comparison groups. The total expense also significantly increased for both patient groups. For the exposure group, the average magnitudes of the growth in the total expenditure for the three classes of drugs were 47.7%, 60.0% and 55.3%, respectively. For the comparison group, they were 91.6%, 91.6% and 63.2%, respectively. After the action, approximately 50% of patients obtained more than 180 days of prescription drugs for a six-month period.</p> <p>Conclusion</p> <p>The 2001 price adjustment action, based on generic grouping, significantly reduced the daily expense of each of the three classes of cardiovascular drugs. However, in response to this policy change, hospitals in Taiwan tended to greatly expand the volume of drugs prescribed for their regular patients. Consequently, the total expenditures for the three classes of drugs grew substantially after the action. These knock-on effects weakened the capability of the price adjustment action to control total pharmaceutical expenditures. This means that no saved resources were available for other health care uses. Such expansion of pharmaceutical consumption might also lead to inefficient use of the three drug classes: a large proportion of patients obtained more than one day of drugs per day in the post-action period, suggesting manipulation to increase reimbursement and offset price controls. We recommend that Taiwan's government use the NHI data to establish a monitoring system to detect inappropriate prescription patterns before implementing future policy changes. Such a monitoring system could then be used to deter hospitals from abusing their prescription volumes, making it possible to more effectively save health care resources by reducing drug reimbursement rates.</p
Standards for data acquisition and software‐based analysis of in vivo electroencephalography recordings from animals. A TASK1‐WG5 report of the AES/ILAE Translational Task Force of the ILAE
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/139127/1/epi13909.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/139127/2/epi13909_am.pd
Do Physicians Know When Their Diagnoses Are Correct?
This study explores the alignment between physicians' confidence in their diagnoses and the “correctness” of these diagnoses, as a function of clinical experience, and whether subjects were prone to over-or underconfidence. Design : Prospective, counterbalanced experimental design. Setting : Laboratory study conducted under controlled conditions at three academic medical centers. Participants : Seventy-two senior medical students, 72 senior medical residents, and 72 faculty internists. Intervention : We created highly detailed, 2-to 4-page synopses of 36 diagnostically challenging medical cases, each with a definitive correct diagnosis. Subjects generated a differential diagnosis for each of 9 assigned cases, and indicated their level of confidence in each diagnosis. Measurements And Main Results : A differential was considered “correct” if the clinically true diagnosis was listed in that subject's hypothesis list. To assess confidence, subjects rated the likelihood that they would, at the time they generated the differential, seek assistance in reaching a diagnosis. Subjects' confidence and correctness were “mildly” aligned (Κ=.314 for all subjects, .285 for faculty, .227 for residents, and .349 for students). Residents were overconfident in 41% of cases where their confidence and correctness were not aligned, whereas faculty were overconfident in 36% of such cases and students in 25%. Conclusions : Even experienced clinicians may be unaware of the correctness of their diagnoses at the time they make them. Medical decision support systems, and other interventions designed to reduce medical errors, cannot rely exclusively on clinicians' perceptions of their needs for such support.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74850/1/j.1525-1497.2005.30145.x.pd
Blunted Neuronal Calcium Response to Hypoxia in Naked Mole-Rat Hippocampus
Naked mole-rats are highly social and strictly subterranean rodents that live in large communal colonies in sealed and chronically oxygen-depleted burrows. Brain slices from naked mole-rats show extreme tolerance to hypoxia compared to slices from other mammals, as indicated by maintenance of synaptic transmission under more hypoxic conditions and three fold longer latency to anoxic depolarization. A key factor in determining whether or not the cellular response to hypoxia is reversible or leads to cell death may be the elevation of intracellular calcium concentration. In the present study, we used fluorescent imaging techniques to measure relative intracellular calcium changes in CA1 pyramidal cells of hippocampal slices during hypoxia. We found that calcium accumulation during hypoxia was significantly and substantially attenuated in slices from naked mole-rats compared to slices from laboratory mice. This was the case for both neonatal (postnatal day 6) and older (postnatal day 20) age groups. Furthermore, while both species demonstrated more calcium accumulation at older ages, the older naked mole-rats showed a smaller calcium accumulation response than even the younger mice. A blunted intracellular calcium response to hypoxia may contribute to the extreme hypoxia tolerance of naked mole-rat neurons. The results are discussed in terms of a general hypothesis that a very prolonged or arrested developmental process may allow adult naked mole-rat brain to retain the hypoxia tolerance normally only seen in neonatal mammals
Effects of Anti-VEGF on Predicted Antibody Biodistribution: Roles of Vascular Volume, Interstitial Volume, and Blood Flow
BACKGROUND: The identification of clinically meaningful and predictive models of disposition kinetics for cancer therapeutics is an ongoing pursuit in drug development. In particular, the growing interest in preclinical evaluation of anti-angiogenic agents alone or in combination with other drugs requires a complete understanding of the associated physiological consequences. METHODOLOGY/PRINCIPAL FINDINGS: Technescan™ PYP™, a clinically utilized radiopharmaceutical, was used to measure tissue vascular volumes in beige nude mice that were naïve or administered a single intravenous bolus dose of a murine anti-vascular endothelial growth factor (anti-VEGF) antibody (10 mg/kg) 24 h prior to assay. Anti-VEGF had no significant effect (p>0.05) on the fractional vascular volumes of any tissues studied; these findings were further supported by single photon emission computed tomographic imaging. In addition, apart from a borderline significant increase (p = 0.048) in mean hepatic blood flow, no significant anti-VEGF-induced differences were observed (p>0.05) in two additional physiological parameters, interstitial fluid volume and the organ blood flow rate, measured using indium-111-pentetate and rubidium-86 chloride, respectively. Areas under the concentration-time curves generated by a physiologically-based pharmacokinetic model changed substantially (>25%) in several tissues when model parameters describing compartmental volumes and blood flow rates were switched from literature to our experimentally derived values. However, negligible changes in predicted tissue exposure were observed when comparing simulations based on parameters measured in naïve versus anti-VEGF-administered mice. CONCLUSIONS/SIGNIFICANCE: These observations may foster an enhanced understanding of anti-VEGF effects in murine tissues and, in particular, may be useful in modeling antibody uptake alone or in combination with anti-VEGF
Comprehensive analysis of human microRNA target networks
<p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) mediate posttranscriptional regulation of protein-coding genes by binding to the 3' untranslated region of target mRNAs, leading to translational inhibition, mRNA destabilization or degradation, depending on the degree of sequence complementarity. In general, a single miRNA concurrently downregulates hundreds of target mRNAs. Thus, miRNAs play a key role in fine-tuning of diverse cellular functions, such as development, differentiation, proliferation, apoptosis and metabolism. However, it remains to be fully elucidated whether a set of miRNA target genes regulated by an individual miRNA in the whole human microRNAome generally constitute the biological network of functionally-associated molecules or simply reflect a random set of functionally-independent genes.</p> <p>Methods</p> <p>The complete set of human miRNAs was downloaded from miRBase Release 16. We explored target genes of individual miRNA by using the Diana-microT 3.0 target prediction program, and selected the genes with the miTG score ≧ 20 as the set of highly reliable targets. Then, Entrez Gene IDs of miRNA target genes were uploaded onto KeyMolnet, a tool for analyzing molecular interactions on the comprehensive knowledgebase by the neighboring network-search algorithm. The generated network, compared side by side with human canonical networks of the KeyMolnet library, composed of 430 pathways, 885 diseases, and 208 pathological events, enabled us to identify the canonical network with the most significant relevance to the extracted network.</p> <p>Results</p> <p>Among 1,223 human miRNAs examined, Diana-microT 3.0 predicted reliable targets from 273 miRNAs. Among them, KeyMolnet successfully extracted molecular networks from 232 miRNAs. The most relevant pathway is transcriptional regulation by transcription factors RB/E2F, the disease is adult T cell lymphoma/leukemia, and the pathological event is cancer.</p> <p>Conclusion</p> <p>The predicted targets derived from approximately 20% of all human miRNAs constructed biologically meaningful molecular networks, supporting the view that a set of miRNA targets regulated by a single miRNA generally constitute the biological network of functionally-associated molecules in human cells.</p
- …