700 research outputs found

    An efficient method for generation of bi-allelic null mutant mouse embryonic stem cells and its application for investigating epigenetic modifiers.

    Get PDF
    Mouse embryonic stem (ES) cells are a popular model system to study biological processes, though uncovering recessive phenotypes requires inactivating both alleles. Building upon resources from the International Knockout Mouse Consortium (IKMC), we developed a targeting vector for second allele inactivation in conditional-ready IKMC 'knockout-first' ES cell lines. We applied our technology to several epigenetic regulators, recovering bi-allelic targeted clones with a high efficiency of 60% and used Flp recombinase to restore expression in two null cell lines to demonstrate how our system confirms causality through mutant phenotype reversion. We designed our strategy to select against re-targeting the 'knockout-first' allele and identify essential genes in ES cells, including the histone methyltransferase Setdb1. For confirmation, we exploited the flexibility of our system, enabling tamoxifen inducible conditional gene ablation while controlling for genetic background and tamoxifen effects. Setdb1 ablated ES cells exhibit severe growth inhibition, which is not rescued by exogenous Nanog expression or culturing in naive pluripotency '2i' media, suggesting that the self-renewal defect is mediated through pluripotency network independent pathways. Our strategy to generate null mutant mouse ES cells is applicable to thousands of genes and repurposes existing IKMC Intermediate Vectors

    Spin and Chirality Effects in Antler-Topology Processes at High Energy e+e−e^+e^- Colliders

    Full text link
    We perform a model-independent investigation of spin and chirality correlation effects in the antler-topology processes e+e−→P+P−→(ℓ+D0)(ℓ−Dˉ0)e^+e^-\to\mathcal{P}^+\mathcal{P}^-\to (\ell^+ \mathcal{D}^0) (\ell^-\mathcal{\bar{D}}^0) at high energy e+e−e^+e^- colliders with polarized beams. Generally the production process e+e−→P+P−e^+e^-\to\mathcal{P}^+\mathcal{P}^- can occur not only through the ss-channel exchange of vector bosons, V0\mathcal{V}^0, including the neutral Standard Model (SM) gauge bosons, γ\gamma and ZZ, but also through the ss- and tt-channel exchanges of new neutral states, S0\mathcal{S}^0 and T0\mathcal{T}^0, and the uu-channel exchange of new doubly-charged states, U−−\mathcal{U}^{--}. The general set of (non-chiral) three-point couplings of the new particles and leptons allowed in a renormalizable quantum field theory is considered. The general spin and chirality analysis is based on the threshold behavior of the excitation curves for P+P−\mathcal{P}^+\mathcal{P}^- pair production in e+e−e^+e^- collisions with longitudinal and transverse polarized beams, the angular distributions in the production process and also the production-decay angular correlations. In the first step, we present the observables in the helicity formalism. Subsequently, we show how a set of observables can be designed for determining the spins and chiral structures of the new particles without any model assumptions. Finally, taking into account a typical set of approximately chiral invariant scenarios, we demonstrate how the spin and chirality effects can be probed experimentally at a high energy e+e−e^+e^- collider.Comment: 50 pages, 14 figures, 6 tables, matches version published in EPJ

    Psychometric analysis of the scale for the predisposition to the occurrence of adverse events in nursing care provided in ICUS

    Get PDF
    OBJECTIVE: to present the result of the validity and reliability studies concerning the Scale for the Predisposition to the Occurrence of Adverse Events (EPEA). METHOD: construct validity was based on Principal Components Analysis. RESULTS: reliability verified through Cronbach's alpha indicated good reliability (structure α=0.80; process α=0.92). CONCLUSION: based on its psychometric indicators, the EPEA can be considered a valid measure to assess the attitudes of nurses in relation to factors that potentially lead to the occurrence of adverse events in ICUs

    Extraction of bodily features for gait recognition and gait attractiveness evaluation

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-012-1319-2. Copyright @ 2012 Springer.Although there has been much previous research on which bodily features are most important in gait analysis, the questions of which features should be extracted from gait, and why these features in particular should be extracted, have not been convincingly answered. The primary goal of the study reported here was to take an analytical approach to answering these questions, in the context of identifying the features that are most important for gait recognition and gait attractiveness evaluation. Using precise 3D gait motion data obtained from motion capture, we analyzed the relative motions from different body segments to a root marker (located on the lower back) of 30 males by the fixed root method, and compared them with the original motions without fixing root. Some particular features were obtained by principal component analysis (PCA). The left lower arm, lower legs and hips were identified as important features for gait recognition. For gait attractiveness evaluation, the lower legs were recognized as important features.Dorothy Hodgkin Postgraduate Award and HEFCE

    A phase IIb, open-label, randomized controlled dose ranging multi-centre trial to evaluate the safety, tolerability, pharmacokinetics and exposure-response relationship of different doses of delpazolid in combination with bedaquiline delamanid moxifloxacin in adult subjects with newly diagnosed, uncomplicated, smear-positive, drug-sensitive pulmonary tuberculosis

    Get PDF
    BACKGROUND: Linezolid is an effective, but toxic anti-tuberculosis drug that is currently recommended for the treatment of drug-resistant tuberculosis. Improved oxazolidinones should have a better safety profile, while preserving efficacy. Delpazolid is a novel oxazolidinone developed by LegoChem Biosciences Inc. that has been evaluated up to phase 2a clinical trials. Since oxazolidinone toxicity can occur late in treatment, LegoChem Biosciences Inc. and the PanACEA Consortium designed DECODE to be an innovative dose-ranging study with long-term follow-up for determining the exposure-response and exposure-toxicity relationship of delpazolid to support dose selection for later studies. Delpazolid is administered in combination with bedaquiline, delamanid and moxifloxacin. METHODS: Seventy-five participants with drug-sensitive, pulmonary tuberculosis will receive bedaquiline, delamanid and moxifloxacin, and will be randomized to delpazolid dosages of 0 mg, 400 mg, 800 mg, 1200 mg once daily, or 800 mg twice daily, for 16 weeks. The primary efficacy endpoint will be the rate of decline of bacterial load on treatment, measured by MGIT liquid culture time to detection from weekly sputum cultures. The primary safety endpoint will be the proportion of oxazolidinone class toxicities; neuropathy, myelosuppression, or tyramine pressor response. Participants who convert to negative liquid media culture by week 8 will stop treatment after the end of their 16-week course and will be observed for relapse until week 52. Participants who do not convert to negative culture will receive continuation phase treatment with rifampicin and isoniazid to complete a six-month treatment course. DISCUSSION: DECODE is an innovative dose-finding trial, designed to support exposure-response modelling for safe and effective dose selection. The trial design allows assessment of occurrence of late toxicities as observed with linezolid, which is necessary in clinical evaluation of novel oxazolidinones. The primary efficacy endpoint is the change in bacterial load, an endpoint conventionally used in shorter dose-finding trials. Long-term follow-up after shortened treatment is possible through a safety rule excluding slow-and non-responders from potentially poorly performing dosages. TRIAL REGISTRATION: DECODE was registered in ClinicalTrials.gov before recruitment start on 22 October 2021 (NCT04550832)

    Numerical analysis of seepage–deformation in unsaturated soils

    Get PDF
    A coupled elastic–plastic finite element analysis based on simplified consolidation theory for unsaturated soils is used to investigate the coupling processes of water infiltration and deformation. By introducing a reduced suction and an elastic–plastic constitutive equation for the soil skeleton, the simplified consolidation theory for unsaturated soils is incorporated into an in-house finite element code. Using the proposed numerical method, the generation of pore water pressure and development of deformation can be simulated under evaporation or rainfall infiltration conditions. Through a parametric study and comparison with the test results, the proposed method is found to describe well the characteristics during water evaporation/infiltration into unsaturated soils. Finally, an unsaturated soil slope with water infiltration is analyzed in detail to investigate the development of the displacement and generation of pore water pressure
    • …
    corecore