24 research outputs found

    Chemical and Biochemical Properties of Oxisols after Sewage Sludge Application for 16 Years

    Full text link
    ABSTRACT The large production of sewage sludge (SS), especially in large urban centers, has led to the suggestion of using this waste as fertilizer in agriculture. The economic viability of this action is great and contributes to improve the environment by cycling the nutrients present in this waste, including high contents of organic matter and plant nutrients. This study evaluated the chemical and biochemical properties of Dystrophic and EutroferricLatossolos Vermelhos (Oxisols) under corn and after SS application at different rates for 16 years. The field experiment was carried out in Jaboticabal, São Paulo State, Brazil, using a randomized block design with four treatments and five replications. Treatments consisted of control - T1 (mineral fertilization, without SS application), 5 Mg ha-1 SS - T2, 10 Mg ha-1 SS - T3, and 20 Mg ha-1 SS - T4 (dry weight base). The data were submitted to variance analysis and means were compared by the Duncan test at 5 %. Sewage sludge increased P extracted by resin in both theLatossolos Vermelhos, Dystrophic and Eutroferric, and the organic matter content in the Dystrophic Latossolo Vermelho. The waste at the rate 20 Mg ha-1 on a dry weight basis promoted increases in acid phosphatase activity in Eutroferric Latossolo Vermelho, basal respiration and metabolic quotient in DystrophicLatossolo Vermelho. The rate 20 Mg ha-1 sewage sludge on a dry weight basis did not alter the soil microbial biomass in both the Latossolos Vermelhos; in addition, it improved corn yields without inducing any symptoms of phytotoxicity or nutrient deficiency in the plants

    Are Grasses Really Useful for the Phytoremediation of Potentially Toxic Trace Elements? A Review

    No full text
    The pollution of soil, water, and air by potentially toxic trace elements poses risks to environmental and human health. For this reason, many chemical, physical, and biological processes of remediation have been developed to reduce the (available) trace element concentrations in the environment. Among those technologies, phytoremediation is an environmentally friendly in situ and cost-effective approach to remediate sites with low-to-moderate pollution with trace elements. However, not all species have the potential to be used for phytoremediation of trace element-polluted sites due to their morpho-physiological characteristics and low tolerance to toxicity induced by the trace elements. Grasses are prospective candidates due to their high biomass yields, fast growth, adaptations to infertile soils, and successive shoot regrowth after harvest. A large number of studies evaluating the processes related to the uptake, transport, accumulation, and toxicity of trace elements in grasses assessed for phytoremediation have been conducted. The aim of this review is (i) to synthesize the available information on the mechanisms involved in uptake, transport, accumulation, toxicity, and tolerance to trace elements in grasses; (ii) to identify suitable grasses for trace element phytoextraction, phytostabilization, and phytofiltration; (iii) to describe the main strategies used to improve trace element phytoremediation efficiency by grasses; and (iv) to point out the advantages, disadvantages, and perspectives for the use of grasses for phytoremediation of trace element-polluted soils
    corecore