39 research outputs found

    Variability in Avian Eggshell Colour: A Comparative Study of Museum Eggshells

    Get PDF
    Background: The exceptional diversity of coloration found in avian eggshells has long fascinated biologists and inspired a broad range of adaptive hypotheses to explain its evolution. Three main impediments to understanding the variability of eggshell appearance are: (1) the reliable quantification of the variation in eggshell colours; (2) its perception by birds themselves, and (3) its relation to avian phylogeny. Here we use an extensive museum collection to address these problems directly, and to test how diversity in eggshell coloration is distributed among different phylogenetic levels of the class Aves. Methodology and Results: Spectrophotometric data on eggshell coloration were collected from a taxonomically representative sample of 251 bird species to determine the change in reflectance across different wavelengths and the taxonomic level where the variation resides. As many hypotheses for the evolution of eggshell coloration assume that egg colours provide a communication signal for an avian receiver, we also modelled reflectance spectra of shell coloration for the avian visual system. We found that a majority of species have eggs with similar background colour (long wavelengths) but that striking differences are just as likely to occur between congeners as between members of different families. The region of greatest variability in eggshell colour among closely related species coincided with the medium-wavelength sensitive region around 500 nm. Conclusions: The majority of bird species share similar background eggshell colours, while the greatest variability among species aligns with differences along a red-brown to blue axis that most likely corresponds with variation in the presence and concentration of two tetrapyrrole pigments responsible for eggshell coloration. Additionally, our results confirm previous findings of temporal changes in museum collections, and this will be of particular concern for studies testing intraspecific hypotheses relating temporal patterns to adaptation of eggshell colour. We suggest that future studies investigating the phylogenetic association between the composition and concentration of eggshell pigments, and between the evolutionary drivers and functional impacts of eggshell colour variability will be most rewarding.Phillip Cassey, Steven J. Portugal, Golo Maurer, John G. Ewen, Rebecca L. Boulton, Mark E. Hauber and Tim M. Blackbur

    Immunoregulation in human malaria: the challenge of understanding asymptomatic infection

    Full text link

    Atherosclerosis and Alzheimer - diseases with a common cause? Inflammation, oxysterols, vasculature

    Full text link

    Effects of nickel hyperaccumulation in Alyssum pintodasilvae on model arthropods representatives of two trophic levels

    Get PDF
    Abstract An experimental assessment of the defence hypothesis of nickel (Ni) hyperaccumulation in Alyssum was lacking. Also, to date no study had investigated the effects of hyperaccumulator litter on a detritivore species. We performed several experiments with model arthropods representatives of two trophic levels: Tribolium castaneum (herbivore) and Porcellio dilatatus (detritivore). In no-choice trials using artificial food disks with different Ni concentrations, T. castaneum fed significantly less as Ni concentration increased and totally rejected disks with the highest Ni concentration. In choice tests, insects preferred disks without Ni. In the no-choice experiment, mortality was low and did not differ significantly among treatments. Hence, this suggested a deterrent effect of high Ni diet. Experiments with P. dilatatus showed that isopods fed A. pintodasilvae litter showed significantly greater mortality (83%) than isopods fed litter from the non-hyperaccumulator species Iberis procumbens (8%), Micromeria juliana (no mortality) or Alnus glutinosa (no mortality). Also, isopods consumed significantly greater amounts of litter from the non-hyperaccumulator plant species. The behaviour of isopods fed A. pintodasilvae litter suggested an antifeedant effect of Ni, possibly due to post-ingestive toxic effects. Our results support the view that Ni defends the Portuguese serpentine hyperaccumulator A. pintodasilvae against herbivores, indicating that Ni can account both for feeding deterrence and toxic effects. The effects of hyperaccumulator litter on the detritivore P. dilatatus suggest that the activity of these important organisms may be significantly impaired with potential consequences on the decomposition processes
    corecore