233 research outputs found

    Genetic association study of NF-ΞΊB genes in UK Caucasian adult and juvenile onset idiopathic inflammatory myopathy

    Get PDF
    Treatment-resistant muscle wasting is an increasingly recognized problem in idiopathic inflammatory myopathy (IIM). TNF-Ξ± is thought to induce muscle catabolism via activation of nuclear factor-kappa B (NF-ΞΊB). Several genes share homology with the NF-ΞΊB family of proteins. This study investigated the role of NF-ΞΊB-related genes in disease susceptibility in UK Caucasian IIM

    Automated Identification of Acute Hepatitis B Using Electronic Medical Record Data to Facilitate Public Health Surveillance

    Get PDF
    Automatic identification of notifiable diseases from electronic medical records can potentially improve the timeliness and completeness of public health surveillance. We describe the development and implementation of an algorithm for prospective surveillance of patients with acute hepatitis B using electronic medical record data.Initial algorithms were created by adapting Centers for Disease Control and Prevention diagnostic criteria for acute hepatitis B into electronic terms. The algorithms were tested by applying them to ambulatory electronic medical record data spanning 1990 to May 2006. A physician reviewer classified each case identified as acute or chronic infection. Additional criteria were added to algorithms in serial fashion to improve accuracy. The best algorithm was validated by applying it to prospective electronic medical record data from June 2006 through April 2008. Completeness of case capture was assessed by comparison with state health department records.A final algorithm including a positive hepatitis B specific test, elevated transaminases and bilirubin, absence of prior positive hepatitis B tests, and absence of an ICD9 code for chronic hepatitis B identified 112/113 patients with acute hepatitis B (sensitivity 97.4%, 95% confidence interval 94-100%; specificity 93.8%, 95% confidence interval 87-100%). Application of this algorithm to prospective electronic medical record data identified 8 cases without false positives. These included 4 patients that had not been reported to the health department. There were no known cases of acute hepatitis B missed by the algorithm.An algorithm using codified electronic medical record data can reliably detect acute hepatitis B. The completeness of public health surveillance may be improved by automatically identifying notifiable diseases from electronic medical record data

    Fuel Conditions Associated with Native and Exotic Grasses in a Subtropical Dry Forest in Puerto Rico

    Get PDF
    Exotic grasses capable of increasing frequency and intensity of anthropogenic fire have invaded subtropical and tropical dry forests worldwide. Since many dry forest trees are susceptible to fire, this can result in decline of native species and loss of forest cover. While the contribution of exotic grasses to altered fire regimes has been well documented, the role of native grasses in contributing to fuel loads in dry forest has received little attention. We assessed differences in fuel conditions among native and exotic grasses within a subtropical dry forest preserve in Puerto Rico. We quantified fine fuel loads, fuel continuity, and seasonal changes in percent dead grass among the following grass patch types: (1) native grass with no known history of recent fire, (2) exotic grass that had burned once (single burn), and (3) exotic grass that burns frequently. Sampling was conducted during one wet season (August to October 2008) and again in the following dry season (February to March 2009). Overall, fine fuel loading was highest in native grass, but this was due to woody fuels rather than grass fuels. Percent of dead grass fuels increased with the transition from wet to dry season, and this increase was more pronounced for exotic grasses. Fuel continuity was highest in frequently burned exotic grass. Differences in grass phenology and fuel continuity may contribute to differences in fire frequency among native and exotic grass patches. Fuel management focused on prescribed fire should be used in conjunction with restoration of tree canopy to reduce fuels and limit development of a grass-fire cycle

    Optical Control of Mammalian Endogenous Transcription and Epigenetic States

    Get PDF
    The dynamic nature of gene expression enables cellular programming, homeostasis, and environmental adaptation in living systems. Dissection of causal gene functions in cellular and organismal processes therefore necessitates approaches that enable spatially and temporally precise modulation of gene expression. Recently, a variety of microbial and plant-derived light-sensitive proteins have been engineered as optogenetic actuators, enabling high precision spatiotemporal control of many cellular functions1-11. However, versatile and robust technologies that enable optical modulation of transcription in the mammalian endogenous genome remain elusive. Here, we describe the development of Light-Inducible Transcriptional Effectors (LITEs), an optogenetic two-hybrid system integrating the customizable TALE DNA-binding domain12-14 with the light-sensitive cryptochrome 2 protein and its interacting partner CIB1 from Arabidopsis thaliana. LITEs do not require additional exogenous chemical co-factors, are easily customized to target many endogenous genomic loci, and can be activated within minutes with reversibility3,4,6,7,15. LITEs can be packaged into viral vectors and genetically targeted to probe specific cell populations. We have applied this system in primary mouse neurons, as well as in the brain of awake mice in vivo to mediate reversible modulation of mammalian endogenous gene expression as well as targeted epigenetic chromatin modifications. The LITE system establishes a novel mode of optogenetic control of endogenous cellular processes and enables direct testing of the causal roles of genetic and epigenetic regulation in normal biological processes and disease states

    Large Scale Association Analysis Identifies Three Susceptibility Loci for Coronary Artery Disease

    Get PDF
    Genome wide association studies (GWAS) and their replications that have associated DNA variants with myocardial infarction (MI) and/or coronary artery disease (CAD) are predominantly based on populations of European or Eastern Asian descent. Replication of the most significantly associated polymorphisms in multiple populations with distinctive genetic backgrounds and lifestyles is crucial to the understanding of the pathophysiology of a multifactorial disease like CAD. We have used our Lebanese cohort to perform a replication study of nine previously identified CAD/MI susceptibility loci (LTA, CDKN2A-CDKN2B, CELSR2-PSRC1-SORT1, CXCL12, MTHFD1L, WDR12, PCSK9, SH2B3, and SLC22A3), and 88 genes in related phenotypes. The study was conducted on 2,002 patients with detailed demographic, clinical characteristics, and cardiac catheterization results. One marker, rs6922269, in MTHFD1L was significantly protective against MI (ORβ€Š=β€Š0.68, pβ€Š=β€Š0.0035), while the variant rs4977574 in CDKN2A-CDKN2B was significantly associated with MI (ORβ€Š=β€Š1.33, pβ€Š=β€Š0.0086). Associations were detected after adjustment for family history of CAD, gender, hypertension, hyperlipidemia, diabetes, and smoking. The parallel study of 88 previously published genes in related phenotypes encompassed 20,225 markers, three quarters of which with imputed genotypes The study was based on our genome-wide genotype data set, with imputation across the whole genome to HapMap II release 22 using HapMap CEU population as a reference. Analysis was conducted on both the genotyped and imputed variants in the 88 regions covering selected genes. This approach replicated HNRNPA3P1-CXCL12 association with CAD and identified new significant associations of CDKAL1, ST6GAL1, and PTPRD with CAD. Our study provides evidence for the importance of the multifactorial aspect of CAD/MI and describes genes predisposing to their etiology

    Applications of CRISPR–Cas systems in neuroscience

    Get PDF
    Genome-editing tools, and in particular those based on CRISPR-Cas (clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein) systems, are accelerating the pace of biological research and enabling targeted genetic interrogation in almost any organism and cell type. These tools have opened the door to the development of new model systems for studying the complexity of the nervous system, including animal models and stem cell-derived in vitro models. Precise and efficient gene editing using CRISPR-Cas systems has the potential to advance both basic and translational neuroscience research.National Institute of Mental Health (U.S.) (Grant 5DP1-MH100706)National Institute of Mental Health (U.S.) (Grant 1R01-MH110049)National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (Grant 5R01DK097768-03

    Characterization of Coastal Urban Watershed Bacterial Communities Leads to Alternative Community-Based Indicators

    Get PDF
    BACKGROUND: Microbial communities in aquatic environments are spatially and temporally dynamic due to environmental fluctuations and varied external input sources. A large percentage of the urban watersheds in the United States are affected by fecal pollution, including human pathogens, thus warranting comprehensive monitoring. METHODOLOGY/PRINCIPAL FINDINGS: Using a high-density microarray (PhyloChip), we examined water column bacterial community DNA extracted from two connecting urban watersheds, elucidating variable and stable bacterial subpopulations over a 3-day period and community composition profiles that were distinct to fecal and non-fecal sources. Two approaches were used for indication of fecal influence. The first approach utilized similarity of 503 operational taxonomic units (OTUs) common to all fecal samples analyzed in this study with the watershed samples as an index of fecal pollution. A majority of the 503 OTUs were found in the phyla Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. The second approach incorporated relative richness of 4 bacterial classes (Bacilli, Bacteroidetes, Clostridia and alpha-proteobacteria) found to have the highest variance in fecal and non-fecal samples. The ratio of these 4 classes (BBC:A) from the watershed samples demonstrated a trend where bacterial communities from gut and sewage sources had higher ratios than from sources not impacted by fecal material. This trend was also observed in the 124 bacterial communities from previously published and unpublished sequencing or PhyloChip- analyzed studies. CONCLUSIONS/SIGNIFICANCE: This study provided a detailed characterization of bacterial community variability during dry weather across a 3-day period in two urban watersheds. The comparative analysis of watershed community composition resulted in alternative community-based indicators that could be useful for assessing ecosystem health
    • …
    corecore