306 research outputs found

    ND1 COST-EFFECTIVENESS OF DISEASE-MODIFYING THERAPY FOR MULTIPLE SCLEROSIS: A POPULATION-BASED EVALUATION

    Get PDF

    Framework, principles and recommendations for utilising participatory methodologies in the co-creation and evaluation of public health interventions

    Get PDF
    Background: Due to the chronic disease burden on society, there is a need for preventive public health interventions to stimulate society towards a healthier lifestyle. To deal with the complex variability between individual lifestyles and settings, collaborating with end-users to develop interventions tailored to their unique circumstances has been suggested as a potential way to improve effectiveness and adherence. Co-creation of public health interventions using participatory methodologies has shown promise but lacks a framework to make this process systematic. The aim of this paper was to identify and set key principles and recommendations for systematically applying participatory methodologies to co-create and evaluate public health interventions. Methods: These principles and recommendations were derived using an iterative reflection process, combining key learning from published literature in addition to critical reflection on three case studies conducted by research groups in three European institutions, all of whom have expertise in co-creating public health interventions using different participatory methodologies. Results: Key principles and recommendations for using participatory methodologies in public health intervention co-creation are presented for the stages of: Planning (framing the aim of the study and identifying the appropriate sampling strategy); Conducting (defining the procedure, in addition to manifesting ownership); Evaluating (the process and the effectiveness) and Reporting (providing guidelines to report the findings). Three scaling models are proposed to demonstrate how to scale locally developed interventions to a population level. Conclusions: These recommendations aim to facilitate public health intervention co-creation and evaluation utilising participatory methodologies by ensuring the process is systematic and reproducible

    The degradation of p53 and its major E3 ligase Mdm2 is differentially dependent on the proteasomal ubiquitin receptor S5a.

    Get PDF
    p53 and its major E3 ligase Mdm2 are both ubiquitinated and targeted to the proteasome for degradation. Despite the importance of this in regulating the p53 pathway, little is known about the mechanisms of proteasomal recognition of ubiquitinated p53 and Mdm2. In this study, we show that knockdown of the proteasomal ubiquitin receptor S5a/PSMD4/Rpn10 inhibits p53 protein degradation and results in the accumulation of ubiquitinated p53. Overexpression of a dominant-negative deletion of S5a lacking its ubiquitin-interacting motifs (UIM)s, but which can be incorporated into the proteasome, also causes the stabilization of p53. Furthermore, small-interferring RNA (siRNA) rescue experiments confirm that the UIMs of S5a are required for the maintenance of low p53 levels. These observations indicate that S5a participates in the recognition of ubiquitinated p53 by the proteasome. In contrast, targeting S5a has no effect on the rate of degradation of Mdm2, indicating that proteasomal recognition of Mdm2 can be mediated by an S5a-independent pathway. S5a knockdown results in an increase in the transcriptional activity of p53. The selective stabilization of p53 and not Mdm2 provides a mechanism for p53 activation. Depletion of S5a causes a p53-dependent decrease in cell proliferation, demonstrating that p53 can have a dominant role in the response to targeting S5a. This study provides evidence for alternative pathways of proteasomal recognition of p53 and Mdm2. Differences in recognition by the proteasome could provide a means to modulate the relative stability of p53 and Mdm2 in response to cellular signals. In addition, they could be exploited for p53-activating therapies. This work shows that the degradation of proteins by the proteasome can be selectively dependent on S5a in human cells, and that this selectivity can extend to an E3 ubiquitin ligase and its substrate

    Engineering adeno-associated viral vectors to evade innate immune and inflammatory responses

    Get PDF
    Nucleic acids are used in many therapeutic modalities, including gene therapy, but their ability to trigger host immune responses in vivo can lead to decreased safety and efficacy. In the case of adeno-associated viral (AAV) vectors, studies have shown that the genome of the vector activates Toll-like receptor 9 (TLR9), a pattern recognition receptor that senses foreign DNA. Here, we engineered AAV vectors to be intrinsically less immunogenic by incorporating short DNA oligonucleotides that antagonize TLR9 activation directly into the vector genome. The engineered vectors elicited markedly reduced innate immune and T cell responses and enhanced gene expression in clinically relevant mouse and pig models across different tissues, including liver, muscle, and retina. Subretinal administration of higher-dose AAV in pigs resulted in photoreceptor pathology with microglia and T cell infiltration. These adverse findings were avoided in the contralateral eyes of the same animals that were injected with the engineered vectors. However, intravitreal injection of higher-dose AAV in macaques, a more immunogenic route of administration, showed that the engineered vector delayed but did not prevent clinical uveitis, suggesting that other immune factors in addition to TLR9 may contribute to intraocular inflammation in this model. Our results demonstrate that linking specific immunomodulatory noncoding sequences to much longer therapeutic nucleic acids can “cloak” the vector from inducing unwanted immune responses in multiple, but not all, models. This “coupled immunomodulation” strategy may widen the therapeutic window for AAV therapies as well as other DNA-based gene transfer methods

    Patient-reported wellbeing and clinical disease measures over time captured by multivariate trajectories of disease activity in individuals with juvenile idiopathic arthritis in the UK: a multicentre prospective longitudinal study

    Get PDF
    Background: Juvenile idiopathic arthritis (JIA) is a heterogeneous disease, the signs and symptoms of which can be summarised with use of composite disease activity measures, including the clinical Juvenile Arthritis Disease Activity Score (cJADAS). However, clusters of children and young people might experience different global patterns in their signs and symptoms of disease, which might run in parallel or diverge over time. We aimed to identify such clusters in the 3 years after a diagnosis of JIA. The identification of these clusters would allow for a greater understanding of disease progression in JIA, including how physician-reported and patient-reported outcomes relate to each other over the JIA disease course. / Methods: In this multicentre prospective longitudinal study, we included children and young people recruited before Jan 1, 2015, to the Childhood Arthritis Prospective Study (CAPS), a UK multicentre inception cohort. Participants without a cJADAS score were excluded. To assess groups of children and young people with similar disease patterns in active joint count, physician’s global assessment, and patient or parental global evaluation, we used latent profile analysis at initial presentation to paediatric rheumatology and multivariate group-based trajectory models for the following 3 years. Optimal models were selected on the basis of a combination of model fit, clinical plausibility, and model parsimony. / Finding: Between Jan 1, 2001, and Dec 31, 2014, 1423 children and young people with JIA were recruited to CAPS, 239 of whom were excluded, resulting in a final study population of 1184 children and young people. We identified five clusters at baseline and six trajectory groups using longitudinal follow-up data. Disease course was not well predicted from clusters at baseline; however, in both cross-sectional and longitudinal analyses, substantial proportions of children and young people had high patient or parent global scores despite low or improving joint counts and physician global scores. Participants in these groups were older, and a higher proportion of them had enthesitisrelated JIA and lower socioeconomic status, compared with those in other groups. / Interpretation: Almost one in four children and young people with JIA in our study reported persistent, high patient or parent global scores despite having low or improving active joint counts and physician’s global scores. Distinct patient subgroups defined by disease manifestation or trajectories of progression could help to better personalise health-care services and treatment plans for individuals with JIA. / Funding: Medical Research Council, Versus Arthritis, Great Ormond Street Hospital Children’s Charity, Olivia’s Vision, and National Institute for Health Researc

    Hedgehog signal activation in oesophageal cancer patients undergoing neoadjuvant chemoradiotherapy

    Get PDF
    The zinc finger protein glioma-associated oncogene homologue 1 (Gli-1) is a critical component of the Hedgehog (Hh) signalling pathway, which is essential for morphogenesis and stem-cell renewal, and is dysregulated in many cancer types. As data were not available on the role of Gli-1 expression in oesophageal cancer progression, we analysed whether it could be used to predict disease progression and prognosis in oesophageal cancer patients undergoing neoadjuvant chemoradiotherapy (CRT). Among 69 patients with histologically confirmed oesophageal squamous cell carcinomas (ESCCs), 25 showed a pathological complete response after preoperative CRT. Overall survival (OS) was significantly associated with lymph-node metastasis, distant metastasis, and CRT, and was further correlated with the absence of both Gli-1 nuclear expression and residual tumour. All patients with Gli-1 nuclear expression (10.1%) had distant or lymph-node metastasis, and six out of seven died within 13 months. Furthermore, patients with Gli-1 nuclear-positive cancers showed significantly poorer prognoses than those without (disease-free survival: mean DFS time 250 vs 1738 months, 2-year DFS 0 vs 54.9%, P=0.009; OS: mean OS time 386 vs 1742 months, 2-year OS 16.7 vs 54.9%, P=0.001). Our study provides the first evidence that Gli-1 nuclear expression is a strong and independent predictor of early relapse and poor prognosis in ESCC after CRT. These findings suggest that Hh signal activation might promote cancer regrowth and progression after CRT

    Molecular Mechanisms of Bortezomib Resistant Adenocarcinoma Cells

    Get PDF
    Bortezomib (Velcade™) is a reversible proteasome inhibitor that is approved for the treatment of multiple myeloma (MM). Despite its demonstrated clinical success, some patients are deprived of treatment due to primary refractoriness or development of resistance during therapy. To investigate the role of the duration of proteasome inhibition in the anti-tumor response of bortezomib, we established clonal isolates of HT-29 adenocarcinoma cells adapted to continuous exposure of bortezomib. These cells were ∼30-fold resistant to bortezomib. Two novel and distinct mutations in the β5 subunit, Cys63Phe, located distal to the binding site in a helix critical for drug binding, and Arg24Cys, found in the propeptide region were found in all resistant clones. The latter mutation is a natural variant found to be elevated in frequency in patients with MM. Proteasome activity and levels of both the constitutive and immunoproteasome were increased in resistant cells, which correlated to an increase in subunit gene expression. These changes correlated with a more rapid recovery of proteasome activity following brief exposure to bortezomib. Increased recovery rate was not due to increased proteasome turnover as similar findings were seen in cells co-treated with cycloheximide. When we exposed resistant cells to the irreversible proteasome inhibitor carfilzomib we noted a slower rate of recovery of proteasome activity as compared to bortezomib in both parental and resistant cells. Importantly, carfilzomib maintained its cytotoxic potential in the bortezomib resistant cell lines. Therefore, resistance to bortezomib, can be overcome with irreversible inhibitors, suggesting prolonged proteasome inhibition induces a more potent anti-tumor response
    corecore