20 research outputs found

    Facilitation of Male Sexual Behavior in Syrian Hamsters by the Combined Action of Dihydrotestosterone and Testosterone

    Get PDF
    Testosterone (T) controls male Syrian hamster sexual behavior, however, neither of T's primary metabolites, dihydrotestosterone (DHT) and estradiol (E(2)), even in highly supraphysiological doses, fully restores sexual behavior in castrated hamsters. DHT and T apparently interact with androgen receptors differentially to control male sexual behavior (MSB), but whether these two hormones act synergistically or antagonistically to control MSB has received scant experimental attention and is addressed in the present study.Sexually experienced male Syrian hamsters were gonadectomized and monitored 5 weeks later to confirm elimination of the ejaculatory reflex (week 0), at which time they received subcutaneous DHT-filled or empty capsules that remained in situ for the duration of the experiment. Daily injections of a physiological dose of 25 µg T or vehicle commenced two weeks after capsule implantation. MSB was tested 2, 4 and 5 weeks after T treatment began. DHT capsules were no more effective than control treatment for long-term restoration of ejaculation. Combined DHT + T treatment, however, restored the ejaculatory reflex more effectively than T alone, as evidenced by more rapid recovery of ejaculatory behavior, shorter ejaculation latencies, and a greater number of ejaculations in 30 minute tests.DHT and T administered together restored sexual behavior to pre-castration levels more rapidly than did T alone, whereas DHT and vehicle were largely ineffective. The additive actions of DHT and T on MSB are discussed in relation to different effects of these androgens on androgen receptors in the male hamster brain mating circuit

    A saturated map of common genetic variants associated with human height

    Get PDF
    Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes(1). Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel(2)) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries.A large genome-wide association study of more than 5 million individuals reveals that 12,111 single-nucleotide polymorphisms account for nearly all the heritability of height attributable to common genetic variants

    A saturated map of common genetic variants associated with human height.

    Get PDF
    Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes1. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel2) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries

    A strategy for obtaining social benefits from the gene revolution

    No full text
    The strategy described in the present paper offers details about the possibility for Brazil to play a more substantial role in the gene revolution. If successfully applied, the powerful science-based technology currently available in Brazil can contribute to extend the benefits of the gene revolution to the poorest countries, very much like the Green Revolution did in the past, thereby reducing the hunger syndrome which claimed the lives of millions of people in some Asian countries, particularly Pakistan and India, decades ago. In his visit to Brazil in February 2004, Norman Borlaug had the opportunity to witness the success of Brazilian agriculture. At a Conference held at ESALQ - Superior School of Agriculture Luiz de Queiroz in Piracicaba, SP, Brazil, he stated that the 21st century revolution will come from Brazil in the area of agriculture. He also said that reducing hunger is essential for the world to achieve socioeconomic stability. A central question remains unanswered: who will fund this revolution? The FAO 2003-2004 Annual Report listed the barriers preventing the gene revolution from reaching the poorest countries: inadequate regulatory procedures - Intellectual Property Rights and Biosafety, poorly functioning seed delivering systems and weak domestic plant breeding capacity; all are discussed in this paper
    corecore