20 research outputs found

    vertical distribution of springtails from epiphytic moss from abies religiosa forest in state of mexico, mexico

    No full text
    We evaluated the Collembola communities at 3 different heights on epiphytic moss. The study was carried out in an Abies religiosa forest, in the locality of San Rafael in the State of Mexico, Mexico. Collembola inhabiting epiphytic moss were sampled during November 2003, and during March, June and August 2004. The Shannon's diversity index, species richness, as well as their density and diversity were estimated in 3 communities. The total number of Collembola species that was collected was 12, with the species richness and density decreasing as the height of tree increased. The height on trees where moss was sampled had a significant negative effect on species diversity as well as on the densities of Pseudachorutes subcrassus, Entomobrya ca. triangularis, Americabrya arida and Ptenothrix marmorata. Our results suggest that vertical stratification of Collembola is affected by, differentiation of the microhabitats at different height levels of trees and by morphological and ecological features of species. This also demonstrates the capacity of Collembola for migration to other tree heights in order to search for food and to avoid predation

    The FKBP52 Cochaperone Acts in Synergy with β-Catenin to Potentiate Androgen Receptor Signaling

    Get PDF
    FKBP52 and β-catenin have emerged in recent years as attractive targets for prostate cancer treatment. β-catenin interacts directly with the androgen receptor (AR) and has been characterized as a co-activator of AR-mediated transcription. FKBP52 is a positive regulator of AR in cellular and whole animal models and is required for the development of androgen-dependent tissues. We previously characterized an AR inhibitor termed MJC13 that putatively targets the AR BF3 surface to specifically inhibit FKBP52-regulated AR signaling. Predictive modeling suggests that β-catenin interacts with the AR hormone binding domain on a surface that overlaps with BF3. Here we demonstrate that FKBP52 and β-catenin interact directly in vitro and act in concert to promote a synergistic up-regulation of both hormone-independent and -dependent AR signaling. Our data demonstrate that FKBP52 promotes β-catenin interaction with AR and is required for β-catenin co-activation of AR activity in prostate cancer cells. MJC13 effectively blocks β-catenin interaction with the AR LBD and the synergistic up-regulation of AR by FKBP52 and β-catenin. Our data suggest that co-regulation of AR by FKBP52 and β-catenin does not require FKBP52 PPIase catalytic activity, nor FKBP52 binding to Hsp90. However, the FKBP52 proline-rich loop that overhangs the PPIase pocket is critical for synergy
    corecore