62 research outputs found
The Dilemma of Influenza Vaccine Recommendations when Applied to the Tropics: The Brazilian Case Examined Under Alternative Scenarios
Since 1999 the World Health Organization issues annually an additional influenza vaccine composition recommendation. This initiative aimed to extend to the Southern Hemisphere (SH) the benefits—previously enjoyed only by the Northern Hemisphere (NH)—of a vaccine recommendation issued as close as possible to the moment just before the onset of the influenza epidemic season. A short time between the issue of the recommendation and vaccine delivery is needed to maximize the chances of correct matching between putative circulating strains and one of the three strains present in the vaccine composition. Here we compare the effectiveness of the SH influenza vaccination adopted in Brazil with hypothetical alternative scenarios defined by different timings of vaccine delivery and/or composition. Scores were based on the temporal overlap between vaccine-induced protection and circulating strains. Viral data were obtained between 1999 and 2007 from constant surveillance and strain characterization in two Brazilian cities: Belém, located at the Equatorial region, and São Paulo, at the limit between the tropical and subtropical regions. Our results show that, among currently feasible options, the best strategy for Brazil would be to adopt the NH composition and timing, as in such case protection would increase from 30% to 65% (p<.01) if past data can be used as a prediction of the future. The influenza season starts in Brazil (and in the equator virtually ends) well before the SH winter, making the current delivery of the SH vaccination in April too late to be effective. Since Brazil encompasses a large area of the Southern Hemisphere, our results point to the possibility of these conclusions being similarly valid for other tropical regions
Seasonality of Influenza A(H3N2) Virus: A Hong Kong Perspective (1997–2006)
BACKGROUND: The underlying basis for the seasonality of influenza A viruses is still uncertain. Phylogenetic studies investigated this phenomenon but have lacked sequences from more subtropical and tropical regions, particularly from Southeast Asia. METHODOLOGY/PRINCIPAL FINDINGS: 281 complete hemagglutinin (HA) and neuraminidase (NA) sequences were obtained from influenza A(H3N2) viruses, collected over 10 years (1997-2006) from Hong Kong. These dated sequences were analyzed with influenza A(H3N2) vaccine strain sequences (Syd/5/97, Mos/10/99, Fuj/411/02, Cal/7/04) and 315 other publicly available dated sequences from elsewhere, worldwide. In addition, the NA sequence alignment was inspected for the presence of any naturally occurring, known, neuraminidase inhibitor (NAI) resistance-associated amino acid mutations (R292K and E119V). Before 2001, the Hong Kong HA and NA sequences clustered more closely with the older vaccine sequences (Syd/5/97, Mos/10/99) than did sequences from elsewhere. After 2001, this trend reversed with significant clusters containing HA and NA sequences from different locations, isolated at different times, suggesting that viral migration may account for much of the influenza A(H3N2) seasonality during this 10-year period. However, at least one example from Hong Kong was found suggesting that in some years, influenza A(H3N2) viruses may persist in the same location, perhaps continuing to circulate, sub-clinically, at low levels between seasons, to re-emerge in the influenza season the following year, relatively unchanged. None of these Hong Kong influenza A(H3N2) NA sequences contained any of the known NAI-resistance associated mutations. CONCLUSIONS/SIGNIFICANCE: The seasonality of influenza A(H3N2) may be largely due to global migration, with similar viruses appearing in different countries at different times. However, occasionally, some viruses may remain within a single location and continue to circulate within that population, to re-emerge during the next influenza season, with relatively little genetic change. Naturally occurring NAI resistance mutations were absent or, at least, very rare in this population
Molecular Epidemiology and Evolution of Human Enterovirus Serotype 68 in Thailand, 2006–2011
BACKGROUND: Publications worldwide have reported on the re-occurrence of human enterovirus 68 (EV68), a rarely detected pathogen usually causing respiratory illness. However, epidemiological data regarding this virus in particular on the Asian continent has so far been limited. METHODOLOGY/FINDINGS: We investigated the epidemiology and genetic variability of EV68 infection among Thai children with respiratory illnesses from 2006-2011 (n = 1810). Semi-nested PCR using primer sets for amplification of the 5'-untranslated region through VP2 was performed for rhino-enterovirus detection. Altogether, 25 cases were confirmed as EV68 infection indicating a prevalence of 1.4% in the entire study population. Interestingly, the majority of samples were children aged >5 years (64%). Also, co-infection with other viruses was found in 28%, while pandemic H1N1 influenza/2009 virus was the most common co-infection. Of EV68-positive patients, 36% required hospitalizations with the common clinical presentations of fever, cough, dyspnea, and wheezing. The present study has shown that EV68 was extremely rare until 2009 (0.9%). An increasing annual prevalence was found in 2010 (1.6%) with the highest detection frequency in 2011 (4.3%). Based on analysis of the VP1 gene, the evolutionary rate of EV68 was estimated at 4.93 × 10(-3) substitutions/site/year. Major bifurcation of the currently circulating EV68 strains occurred 66 years ago (1945.31 with (1925.95-1960.46)95% HPD). Among the current lineages, 3 clusters of EV68 were categorized based on the different molecular signatures in the BC and DE loops of VP1 combined with high posterior probability values. Each cluster has branched off from their common ancestor at least 36 years ago (1975.78 with (1946.13-1984.97)95% HPD). CONCLUSION: Differences in epidemiological characteristic and seasonal profile of EV68 have been found in this study. Results from Bayesian phylogenetic investigations also revealed that EV68 should be recognized as a genetically diverse virus with a substitution rate identical to that of enterovirus 71 genotype B (4.2 × 10(-3 )s/s/y)
Respiratory viral pathogens among Singapore military servicemen 2009 - 2012: Epidemiology and clinical characteristics
10.1186/1471-2334-14-204BMC Infectious Diseases141-BIDM
Small Cationic DDA:TDB Liposomes as Protein Vaccine Adjuvants Obviate the Need for TLR Agonists in Inducing Cellular and Humoral Responses
Most subunit vaccines require adjuvants in order to induce protective immune responses to the targeted pathogen. However, many of the potent immunogenic adjuvants display unacceptable local or systemic reactogenicity. Liposomes are spherical vesicles consisting of single (unilamellar) or multiple (multilamellar) phospholipid bi-layers. The lipid membranes are interleaved with an aqueous buffer, which can be utilised to deliver hydrophilic vaccine components, such as protein antigens or ligands for immune receptors. Liposomes, in particular cationic DDA:TDB vesicles, have been shown in animal models to induce strong humoral responses to the associated antigen without increased reactogenicity, and are currently being tested in Phase I human clinical trials. We explored several modifications of DDA:TDB liposomes - including size, antigen association and addition of TLR agonists – to assess their immunogenic capacity as vaccine adjuvants, using Ovalbumin (OVA) protein as a model protein vaccine. Following triple homologous immunisation, small unilamellar vesicles (SUVs) with no TLR agonists showed a significantly higher capacity for inducing spleen CD8 IFNγ responses against OVA in comparison with the larger multilamellar vesicles (MLVs). Antigen-specific antibody reponses were also higher with SUVs. Addition of the TLR3 and TLR9 agonists significantly increased the adjuvanting capacity of MLVs and OVA-encapsulating dehydration-rehydration vesicles (DRVs), but not of SUVs. Our findings lend further support to the use of liposomes as protein vaccine adjuvants. Importantly, the ability of DDA:TDB SUVs to induce potent CD8 T cell responses without the need for adding immunostimulators would avoid the potential safety risks associated with the clinical use of TLR agonists in vaccines adjuvanted with liposomes
Not all shellfish "allergy" is allergy!
The popularity of shellfish has been increasing worldwide, with a consequent increase in adverse reactions that can be allergic or toxic. The approximate prevalence of shellfish allergy is estimated at 0.5-2.5% of the general population, depending on degree of consumption by age and geographic regions. The manifestations of shellfish allergy vary widely, but it tends to be more severe than most other food allergens
National survey of outcomes and practices in acute respiratory distress syndrome in Singapore
The authors acknowledge the following as the total funding sources for this study: 1. SICM NICER grant: logistical, non-monetary, support from the Society of Intensive Care Medicine Singapore. This was in the form of Ngee Ann Polytechnic students (8) who collected the data for the study for one month. 2. NMRC (National medical research council) grant for Dr, Matthew Cove (partial support for this study): This was in the shape of salary support for all his research related activity. (NMRC/TA/0015/2013) (MEC)
Maternal Lutein and Zeaxanthin Concentrations in Relation to Offspring Visual Acuity at 3 Years of Age: The GUSTO Study
10.3390/nu12020274Nutrients12
Iron status and risk factors of iron deficiency among pregnant women in Singapore: a cross-sectional study
10.1186/s12889-019-6736-yBMC Public Health191GUSTO (Growing up towards Healthy Outcomes
- …