36 research outputs found

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    Foreign ownership, bank information environments, and the international mobility of corporate governance

    Get PDF
    This paper investigates how foreign ownership shapes bank information environments. Using a sample of listed banks from 60 countries over 1997–2012, we show that foreign ownership is significantly associated with greater (lower) informativeness (synchronicity) in bank stock prices. We also find that stock returns of foreign-owned banks reflect more information about future earnings. In addition, the positive association between price informativeness and foreign ownership is stronger for foreign-owned banks in countries with stronger governance, stronger banking supervision, and lower monitoring costs. Overall, our evidence suggests that foreign ownership reduces bank opacity by exporting governance, yielding important implications for regulators and governments

    Gravitational Wave Astronomy: in Anticipation of First Sources to be Detected

    Get PDF
    The first generation of long-baseline laser interferometric detectors of gravitational waves will start collecting data in 2001-2003. We carefully analyse their planned performance and compare it with the expected strengths of astrophysical sources. The scientific importance of the anticipated discovery of various gravitatinal wave signals and the reliability of theoretical predictions are taken into account in our analysis. We try to be conservative both in evaluating the theoretical uncertainties about a source and the prospects of its detection. After having considered many possible sources, we place our emphasis on (1) inspiraling binaries consisting of stellar mass black holes and (2) relic gravitational waves. We draw the conclusion that inspiraling binary black holes are likely to be detected first by the initial ground-based interferometers. We estimate that the initial interferometers will see 2-3 events per year from black hole binaries with component masses 10-15M_\odot, with a signal-to-noise ratio of around 2-3, in each of a network of detectors consisting of GEO, VIRGO and the two LIGOs. It appears that other possible sources, including coalescing neutron stars, are unlikely to be detected by the initial instruments. We also argue that relic gravitational waves may be discovered by the space-based interferometers in the frequency interval 2x10^{-3}-10^{-2} Hz, at the signal-to-noise ratio level around 3.Comment: latex, 100 pages, including 20 postscript figures. Small typos corrected, references adde

    Brain energy rescue:an emerging therapeutic concept for neurodegenerative disorders of ageing

    Get PDF
    The brain requires a continuous supply of energy in the form of ATP, most of which is produced from glucose by oxidative phosphorylation in mitochondria, complemented by aerobic glycolysis in the cytoplasm. When glucose levels are limited, ketone bodies generated in the liver and lactate derived from exercising skeletal muscle can also become important energy substrates for the brain. In neurodegenerative disorders of ageing, brain glucose metabolism deteriorates in a progressive, region-specific and disease-specific manner — a problem that is best characterized in Alzheimer disease, where it begins presymptomatically. This Review discusses the status and prospects of therapeutic strategies for countering neurodegenerative disorders of ageing by improving, preserving or rescuing brain energetics. The approaches described include restoring oxidative phosphorylation and glycolysis, increasing insulin sensitivity, correcting mitochondrial dysfunction, ketone-based interventions, acting via hormones that modulate cerebral energetics, RNA therapeutics and complementary multimodal lifestyle changes

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases
    corecore