389 research outputs found

    Reducing vortex density in superconductors using the ratchet effect

    Full text link
    A serious obstacle that impedes the application of low and high temperature superconductor (SC) devices is the presence of trapped flux. Flux lines or vortices are induced by fields as small as the Earth's magnetic field. Once present, vortices dissipate energy and generate internal noise, limiting the operation of numerous superconducting devices. Methods used to overcome this difficulty include the pinning of vortices by the incorporation of impurities and defects, the construction of flux dams, slots and holes and magnetic shields which block the penetration of new flux lines in the bulk of the SC or reduce the magnetic field in the immediate vicinity of the superconducting device. Naturally, the most desirable would be to remove the vortices from the bulk of the SC. There is no known phenomenon, however, that could form the basis for such a process. Here we show that the application of an ac current to a SC that is patterned with an asymmetric pinning potential can induce vortex motion whose direction is determined only by the asymmetry of the pattern. The mechanism responsible for this phenomenon is the so called ratchet effect, and its working principle applies to both low and high temperature SCs. As a first step here we demonstrate that with an appropriate choice of the pinning potential the ratchet effect can be used to remove vortices from low temperature SCs in the parameter range required for various applications.Comment: 7 pages, 4 figures, Nature (in press

    Mathematical Modelling of DNA Replication Reveals a Trade-off between Coherence of Origin Activation and Robustness against Rereplication

    Get PDF
    Eukaryotic genomes are duplicated from multiple replication origins exactly once per cell cycle. In Saccharomyces cerevisiae, a complex molecular network has been identified that governs the assembly of the replication machinery. Here we develop a mathematical model that links the dynamics of this network to its performance in terms of rate and coherence of origin activation events, number of activated origins, the resulting distribution of replicon sizes and robustness against DNA rereplication. To parameterize the model, we use measured protein expression data and systematically generate kinetic parameter sets by optimizing the coherence of origin firing. While randomly parameterized networks yield unrealistically slow kinetics of replication initiation, networks with optimized parameters account for the experimentally observed distribution of origin firing times. Efficient inhibition of DNA rereplication emerges as a constraint that limits the rate at which replication can be initiated. In addition to the separation between origin licensing and firing, a time delay between the activation of S phase cyclin-dependent kinase (S-Cdk) and the initiation of DNA replication is required for preventing rereplication. Our analysis suggests that distributive multisite phosphorylation of the S-Cdk targets Sld2 and Sld3 can generate both a robust time delay and contribute to switch-like, coherent activation of replication origins. The proposed catalytic function of the complex formed by Dpb11, Sld3 and Sld2 strongly enhances coherence and robustness of origin firing. The model rationalizes how experimentally observed inefficient replication from fewer origins is caused by premature activation of S-Cdk, while premature activity of the S-Cdk targets Sld2 and Sld3 results in DNA rereplication. Thus the model demonstrates how kinetic deregulation of the molecular network governing DNA replication may result in genomic instability

    Morphology and microstructure of chromite crystals in chromitites from the Merensky Reef (Bushveld Complex, South Africa)

    Get PDF
    The Merensky Reef of the Bushveld Complex consists of two chromitite layers separated by coarse-grained melanorite. Microstructural analysis of the chromitite layers using electron backscatter diffraction analysis (EBSD), high-resolution X-ray microtomography and crystal size distribution analyses distinguished two populations of chromite crystals: fine-grained idiomorphic and large silicate inclusion-bearing crystals. The lower chromitite layer contains both populations, whereas the upper contains only fine idiomorphic grains. Most of the inclusion-bearing chromites have characteristic amoeboidal shapes that have been previously explained as products of sintering of pre-existing smaller idiomorphic crystals. Two possible mechanisms have been proposed for sintering of chromite crystals: (1) amalgamation of a cluster of grains with the same original crystallographic orientation; and (2) sintering of randomly orientated crystals followed by annealing into a single grain. The EBSD data show no evidence for clusters of similarly oriented grains among the idiomorphic population, nor for earlier presence of idiomorphic subgrains spatially related to inclusions, and therefore are evidence against both of the proposed sintering mechanisms. Electron backscatter diffraction analysis maps show deformation-related misorientations and curved subgrain boundaries within the large, amoeboidal crystals, and absence of such features in the fine-grained population. Microstructures observed in the lower chromitite layer are interpreted as the result of deformation during compaction of the orthocumulate layers, and constitute evidence for the formation of the amoeboid morphologies at an early stage of consolidation.An alternative model is proposed whereby silicate inclusions are incorporated during maturation and recrystallisation of initially dendritic chromite crystals, formed as a result of supercooling during emplacement of the lower chromite layer against cooler anorthosite during the magma influx that formed the Merensky Reef. The upper chromite layer formed from a subsequent magma influx, and hence lacked a mechanism to form dendritic chromite. This accounts for the difference between the two layers

    Effects of β-alanine supplementation on exercise performance: a meta-analysis

    Get PDF
    Due to the well-defined role of β-alanine as a substrate of carnosine (a major contributor to H+ buffering during high-intensity exercise), β-alanine is fast becoming a popular ergogenic aid to sports performance. There have been several recent qualitative review articles published on the topic, and here we present a preliminary quantitative review of the literature through a meta-analysis. A comprehensive search of the literature was employed to identify all studies suitable for inclusion in the analysis; strict exclusion criteria were also applied. Fifteen published manuscripts were included in the analysis, which reported the results of 57 measures within 23 exercise tests, using 18 supplementation regimes and a total of 360 participants [174, β-alanine supplementation group (BA) and 186, placebo supplementation group (Pla)]. BA improved (P = 0.002) the outcome of exercise measures to a greater extent than Pla [median effect size (IQR): BA 0.374 (0.140–0.747), Pla 0.108 (−0.019 to 0.487)]. Some of that effect might be explained by the improvement (P = 0.013) in exercise capacity with BA compared to Pla; no improvement was seen for exercise performance (P = 0.204). In line with the purported mechanisms for an ergogenic effect of β-alanine supplementation, exercise lasting 60–240 s was improved (P = 0.001) in BA compared to Pla, as was exercise of >240 s (P = 0.046). In contrast, there was no benefit of β-alanine on exercise lasting <60 s (P = 0.312). The median effect of β-alanine supplementation is a 2.85% (−0.37 to 10.49%) improvement in the outcome of an exercise measure, when a median total of 179 g of β-alanine is supplemented

    Understanding missed opportunities for more timely diagnosis of cancer in symptomatic patients after presentation.

    Get PDF
    The diagnosis of cancer is a complex, multi-step process. In this paper, we highlight factors involved in missed opportunities to diagnose cancer more promptly in symptomatic patients and discuss responsible mechanisms and potential strategies to shorten intervals from presentation to diagnosis. Missed opportunities are instances in which post-hoc judgement indicates that alternative decisions or actions could have led to more timely diagnosis. They can occur in any of the three phases of the diagnostic process (initial diagnostic assessment; diagnostic test performance and interpretation; and diagnostic follow-up and coordination) and can involve patient, doctor/care team, and health-care system factors, often in combination. In this perspective article, we consider epidemiological 'signals' suggestive of missed opportunities and draw on evidence from retrospective case reviews of cancer patient cohorts to summarise factors that contribute to missed opportunities. Multi-disciplinary research targeting such factors is important to shorten diagnostic intervals post presentation. Insights from the fields of organisational and cognitive psychology, human factors science and informatics can be extremely valuable in this emerging research agenda. We provide a conceptual foundation for the development of future interventions to minimise the occurrence of missed opportunities in cancer diagnosis, enriching current approaches that chiefly focus on clinical decision support or on widening access to investigations.We acknowledge the helpful and incisive comments by Dr Rikke Sand Andersen (Aarhus University, Denmark) in conceptualising this piece and in drafts of the manuscript. The work is independent research supported by different funding schemes. GL was supported by a Post-Doctoral Fellowship by the National Institute for Health Research (PDF-2011-04-047) until the end of 2014 and by a Cancer Research UK Clinician Scientist Fellowship award (A18180) from 2015. HS is supported by the VA Health Services Research and Development Service (CRE 12-033; Presidential Early Career Award for Scientists and Engineers USA 14-274), the VA National Center for Patient Safety, the Agency for Health Care Research and Quality (R01HS022087) and in part by the Houston VA HSR&D Center for Innovations in Quality, Effectiveness and Safety (CIN 13–413). PV was supported by CaP, funded by The Danish Cancer Society and the Novo Nordisk Foundation.This is the final version of the article. It first appeared at http://dx.doi.org/10.1038/bjc.2015.4

    The supernatural characters and powers of sacred trees in the Holy Land

    Get PDF
    This article surveys the beliefs concerning the supernatural characteristics and powers of sacred trees in Israel; it is based on a field study as well as a survey of the literature and includes 118 interviews with Muslims and Druze. Both the Muslims and Druze in this study attribute supernatural dimensions to sacred trees which are directly related to ancient, deep-rooted pagan traditions. The Muslims attribute similar divine powers to sacred trees as they do to the graves of their saints; the graves and the trees are both considered to be the abode of the soul of a saint which is the source of their miraculous powers. Any violation of a sacred tree would be strictly punished while leaving the opportunity for atonement and forgiveness. The Druze, who believe in the transmigration of souls, have similar traditions concerning sacred trees but with a different religious background. In polytheistic religions the sacred grove/forest is a centre of the community's official worship; any violation of the trees is regarded as a threat to the well being of the community. Punishments may thus be collective. In the monotheistic world (including Christianity, Islam and Druze) the pagan worship of trees was converted into the worship/adoration of saints/prophets; it is not a part of the official religion but rather a personal act and the punishments are exerted only on the violating individual
    corecore