192 research outputs found
Observation of the Decay
Using e+e- annihilation data collected by the CLEO~II detector at CESR, we
have observed the decay Ds+ to omega pi+. This final state may be produced
through the annihilation decay of the Ds+, or through final state interactions.
We find a branching ratio of [Gamma(Ds+ to omega pi+)/Gamma(Ds+ to eta
pi+)]=0.16+-0.04+-0.03, where the first error is statistical and the second is
systematic.Comment: 9 pages, postscript file also available through
http://w4.lns.cornell.edu/public/CLN
Zooplankton spine induces aversion in small fish predators
The spined cladoceran Bythotrephes cederstroemi is protected from small fish predators due to the difficulty small fish have in ingesting the spine. Juvenile yellow perch (Perca flavescens) 50–60 mm in length were offered Bythotrephes with alternative prey available in two experiments. First, perch were observed as they gained experience with Bythotrephes and developed aversion to the zooplankter. Perch initially attacked and captured Bythotrephes . However, they struggled to ingest the spined zooplankter, rejected and recaptured it many times, and finally ceased to attack it. Second, perch were offered Bythotrephes with varying portions of the spine removed to clarify the spine's role in inducing such behaviors. Perch showed greater preference to attack nospine and half-spine Bythotrephes , and were less likely to reject and more likely to ingest Bythotrephes with the spine removed. For small or young fish that forage on zooplankton in lakes where Bythotrephes is present, aversion is an efficient response to the conspicuous but unpalatable spined cladoceran. However, aversion allows Bythotrephes , also a predator on zooplankton, to more effectively compete with young fish without an increase in predation risk.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47794/1/442_2004_Article_BF00317591.pd
Chasing Migration Genes: A Brain Expressed Sequence Tag Resource for Summer and Migratory Monarch Butterflies (Danaus plexippus)
North American monarch butterflies (Danaus plexippus) undergo a spectacular fall migration. In contrast to summer butterflies, migrants are juvenile hormone (JH) deficient, which leads to reproductive diapause and increased longevity. Migrants also utilize time-compensated sun compass orientation to help them navigate to their overwintering grounds. Here, we describe a brain expressed sequence tag (EST) resource to identify genes involved in migratory behaviors. A brain EST library was constructed from summer and migrating butterflies. Of 9,484 unique sequences, 6068 had positive hits with the non-redundant protein database; the EST database likely represents ∼52% of the gene-encoding potential of the monarch genome. The brain transcriptome was cataloged using Gene Ontology and compared to Drosophila. Monarch genes were well represented, including those implicated in behavior. Three genes involved in increased JH activity (allatotropin, juvenile hormone acid methyltransfersase, and takeout) were upregulated in summer butterflies, compared to migrants. The locomotion-relevant turtle gene was marginally upregulated in migrants, while the foraging and single-minded genes were not differentially regulated. Many of the genes important for the monarch circadian clock mechanism (involved in sun compass orientation) were in the EST resource, including the newly identified cryptochrome 2. The EST database also revealed a novel Na+/K+ ATPase allele predicted to be more resistant to the toxic effects of milkweed than that reported previously. Potential genetic markers were identified from 3,486 EST contigs and included 1599 double-hit single nucleotide polymorphisms (SNPs) and 98 microsatellite polymorphisms. These data provide a template of the brain transcriptome for the monarch butterfly. Our “snap-shot” analysis of the differential regulation of candidate genes between summer and migratory butterflies suggests that unbiased, comprehensive transcriptional profiling will inform the molecular basis of migration. The identified SNPs and microsatellite polymorphisms can be used as genetic markers to address questions of population and subspecies structure
Specialized ommatidia of the polarization-sensitive dorsal rim area in the eye of monarch butterflies have non-functional reflecting tapeta
Many insects exploit sky light polarization for navigation or cruising-course control. The detection of polarized sky light is mediated by the ommatidia of a small specialized part of the compound eye: the dorsal rim area (DRA). We describe the morphology and fine structure of the DRA in monarch butterflies (Danaus plexippus). The DRA consists of approximately 100 ommatidia forming a narrow ribbon along the dorsal eye margin. Each ommatidium contains two types of photoreceptor with mutually orthogonal microvilli orientations occurring in a 2:6 ratio. Within each rhabdomere, the microvilli are well aligned. Rhabdom structure and orientation remain constant at all retinal levels, but the rhabdom profiles, as seen in tangential sections through the DRA, change their orientations in a fan-like fashion from the frontal to the caudal end of the DRA. Whereas these properties (two microvillar orientations per rhabdom, microvillar alignment along rhabdomeres, ommatidial fan array) are typical for insect DRAs in general, we also report and discuss here a novel feature. The ommatidia of monarch butterflies are equipped with reflecting tapeta, which are directly connected to the proximal ends of the rhabdoms. Although tapeta are also present in the DRA, they are separated from the rhabdoms by a space of approximately 55 μm effectively inactivating them. This reduces self-screening effects, keeping polarization sensitivity of all photoreceptors of the DRA ommatidia both high and approximately equal
Migratory Connectivity of the Monarch Butterfly (Danaus plexippus): Patterns of Spring Re-Colonization in Eastern North America
Each year, millions of monarch butterflies (Danaus plexippus) migrate up to 3000 km from their overwintering grounds in central Mexico to breed in eastern North America. Malcolm et al. (1993) articulated two non-mutually exclusive hypotheses to explain how Monarchs re-colonize North America each spring. The ‘successive brood’ hypothesis proposes that monarchs migrate from Mexico to the Gulf Coast, lay eggs and die, leaving northern re-colonization of the breeding range to subsequent generations. The ‘single sweep’ hypothesis proposes that overwintering monarchs continue to migrate northward after arriving on the Gulf coast and may reach the northern portion of the breeding range, laying eggs along the way. To examine these hypotheses, we sampled monarchs throughout the northern breeding range and combined stable-hydrogen isotopes (δD) to estimate natal origin with wing wear scores to differentiate between individuals born in the current vs. previous year. Similar to Malcolm et al. (1993), we found that the majority of the northern breeding range was re-colonized by the first generation of monarchs (90%). We also estimated that a small number of individuals (10%) originated directly from Mexico and, therefore adopted a sweep strategy. Contrary to Malcolm et al. (1993), we found that 62% of monarchs sampled in the Great Lakes originated from the Central U.S., suggesting that this region is important for sustaining production in the northern breeding areas. Our results provide new evidence of re-colonization patterns in monarchs and contribute important information towards identifying productive breeding regions of this unique migratory insect
The clock gene PER2 and sleep problems: Association with alcohol consumption among Swedish adolescents
Background. Alcohol abuse is associated with sleep problems, which are often linked to circadian rhythm disturbances. Previous studies have separately examined the effects of mutations in the clock gene PER2 on alcohol consumption and sleep problems. Here we hypothesized that an allelic variation in the PER2 gene is associated with alcohol consumption in interaction with sleep problems among adolescents. Methods. The Survey of Adolescent Life and Health in Vastmanland 2006, a Swedish county, including 1254 students 17-18 years old, was used as a population-representative sample of adolescents. We investigated the PER2 Single Nucleotide polymorphism (SNP) 10870 (A/G) in the cohort together with an assessment of alcohol consumption according to the AUDIT-C questionnaire, and sleep problems using a survey consisting of 18 items. Furthermore, we carried out an exploratory analysis on the PER2 Single Nucleotide Polymorphism 10870 polymorphism in a group of severely alcoholic females. Results. We found a significant association of the SNP 10870 in adolescent boys, where the genotype AA, in the presence of several and frequent sleep problems, was associated with increased alcohol consumption. Among adolescent girls, only sleep problems were related to alcohol consumption. A non-significant trend was observed among the severely alcoholic females, with the G allele being over-represented in the severely alcoholic females group in comparision to the control females. Conclusion. These results indicate that PER2 gene variation is associated with alcohol consumption in interaction with sleep problems among Swedish adolescent boys.</p
Ventilatory and ECMO treatment of H1N1-induced severe respiratory failure: results of an Italian referral ECMO center
Variation of Basal EROD Activities in Ten Passerine Bird Species – Relationships with Diet and Migration Status
Inter-specific differences in animal defence mechanisms against toxic substances are currently poorly understood. The ethoxyresorufin-O-deethylase (EROD) enzyme plays an important role in defence against toxic chemicals in a wide variety of animals, and it is an important biomarker for environmental contamination. We compared basal hepatic EROD activity levels among ten passerine species to see if there is inter-specific variation in enzyme activity, especially in relation to their diet and migration status. Migratory insectivores showed higher EROD activity compared to granivores. We hypothesize that the variable invertebrate diet of migratory insectivores contains a wider range of natural toxins than the narrower diet of granivores. This may have affected the evolution of mixed function oxidases (MFO) system and enzyme activities. We further tested whether metabolic rates or relative liver size were associated with the variation in detoxification capacity. We found no association between EROD activity and relative (per mass unit) basal metabolic rate (BMR). Instead, EROD activity and relative liver mass (% of body mass) correlated positively, suggesting that a proportionally large liver also functions efficiently. Our results suggest that granivores and non-migratory birds may be more vulnerable to environmental contaminants than insectivores and migratory birds. The diet and migration status, however, are phylogenetically strongly connected to each other, and their roles cannot be fully separated in our analysis with only ten passerine species
Genomic Sequence around Butterfly Wing Development Genes: Annotation and Comparative Analysis
, where a whole-genome BAC library allows targeted access to large genomic regions. genes. Comparative analysis with orthologous regions of the lepidopteran reference genome allowed assessment of conservation of fine-scale synteny (with detection of new inversions and translocations) and of DNA sequence (with detection of high levels of conservation of non-coding regions around some, but not all, developmental genes)., both involved in multiple developmental processes including wing pattern formation
Complete mtDNA genomes of Anopheles darlingi and an approach to anopheline divergence time
Abstract Background The complete sequences of the mitochondrial genomes (mtDNA) of members of the northern and southern genotypes of Anopheles (Nyssorhynchus) darlingi were used for comparative studies to estimate the time to the most recent common ancestor for modern anophelines, to evaluate differentiation within this taxon, and to seek evidence of incipient speciation. Methods The mtDNAs were sequenced from mosquitoes from Belize and Brazil and comparative analyses of structure and base composition, among others, were performed. A maximum likelihood approach linked with phylogenetic information was employed to detect evidence of selection and a Bayesian approach was used to date the split between the subgenus Nyssorhynchus and other Anopheles subgenera. Results The comparison of mtDNA sequences within the Anopheles darlingi taxon does not provide sufficient resolution to establish different units of speciation within the species. In addition, no evidence of positive selection in any protein-coding gene of the mtDNA was detected, and purifying selection likely is the basis for this lack of diversity. Bayesian analysis supports the conclusion that the most recent ancestor of Nyssorhynchus and Anopheles+Cellia was extant ~94 million years ago. Conclusion Analyses of mtDNA genomes of Anopheles darlingi do not provide support for speciation in the taxon. The dates estimated for divergence among the anopheline groups tested is in agreement with the geological split of western Gondwana (95 mya), and provides additional support for explaining the absence of Cellia in the New World, and Nyssorhynchus in the Afro-Eurasian continents
- …
