10,469 research outputs found

    Crystal nucleation and cluster-growth kinetics in a model glass under shear

    Full text link
    Crystal nucleation and growth processes induced by an externally applied shear strain in a model metallic glass are studied by means of nonequilibrium molecular dynamics simulations, in a range of temperatures. We observe that the nucleation-growth process takes place after a transient, induction regime. The critical cluster size and the lag-time associated with this induction period are determined from a mean first-passage time analysis. The laws that describe the cluster growth process are studied as a function of temperature and strain rate. A theoretical model for crystallization kinetics that includes the time dependence for nucleation and cluster growth is developed within the framework of the Kolmogorov-Johnson-Mehl-Avrami scenario and is compared with the molecular dynamics data. Scalings for the cluster growth laws and for the crystallization kinetics are also proposed and tested. The observed nucleation rates are found to display a nonmonotonic strain rate dependency

    A note on Weyl transformations in two-dimensional dilaton gravity

    Get PDF
    We discuss Weyl (conformal) transformations in two-dimensional matterless dilaton gravity. We argue that both classical and quantum dilaton gravity theories are invariant under Weyl transformations.Comment: 8 pages, accepted for publication in Mod. Phys. Lett.

    Hole Pairs in the Two-Dimensional Hubbard Model

    Full text link
    The interactions between holes in the Hubbard model, in the low density, intermediate to strong coupling limit, are investigated. Dressed spin polarons in neighboring sites have an increased kinetic energy and an enhanced hopping rate. Both effects are of the order of the hopping integral and lead to an effective attraction at intermediate couplings. Our results are derived by systematically improving mean field calculations. The method can also be used to derive known properties of isolated spin polarons.Comment: 4 page

    Universality of Cluster Dynamics

    Full text link
    We have studied the kinetics of cluster formation for dynamical systems of dimensions up to n=8n=8 interacting through elastic collisions or coalescence. These systems could serve as possible models for gas kinetics, polymerization and self-assembly. In the case of elastic collisions, we found that the cluster size probability distribution undergoes a phase transition at a critical time which can be predicted from the average time between collisions. This enables forecasting of rare events based on limited statistical sampling of the collision dynamics over short time windows. The analysis was extended to Lp^p-normed spaces (p=1,...,p=1,...,\infty) to allow for some amount of interpenetration or volume exclusion. The results for the elastic collisions are consistent with previously published low-dimensional results in that a power law is observed for the empirical cluster size distribution at the critical time. We found that the same power law also exists for all dimensions n=2,...,8n=2,...,8, 2D Lp^p norms, and even for coalescing collisions in 2D. This broad universality in behavior may be indicative of a more fundamental process governing the growth of clusters

    Radio emission from satellite-Jupiter interactions (especially Ganymede)

    Full text link
    Analyzing a database of 26 years of observations of Jupiter from the Nan\c{c}ay Decameter Array, we study the occurrence of Io-independent emissions as a function of the orbital phase of the other Galilean satellites and Amalthea. We identify unambiguously the emissions induced by Ganymede and characterize their intervals of occurrence in CML and Ganymede phase and longitude. We also find hints of emissions induced by Europa and, surprisingly, by Amalthea. The signature of Callisto-induced emissions is more tenuous.Comment: 14 pages, 7 figures, in "Planetary Radio Emissions VIII", G. Fischer, G. Mann, M. Panchenko and P. Zarka eds., Austrian Acad. Sci. Press, Vienna, in press, 201

    Ballistic magnon transport and phonon scattering in the antiferromagnet Nd2_2CuO4_4

    Full text link
    The thermal conductivity of the antiferromagnet Nd2_2CuO4_4 was measured down to 50 mK. Using the spin-flop transition to switch on and off the acoustic Nd magnons, we can reliably separate the magnon and phonon contributions to heat transport. We find that magnons travel ballistically below 0.5 K, with a thermal conductivity growing as T3T^3, from which we extract their velocity. We show that the rate of scattering of acoustic magnons by phonons grows as T3T^3, and the scattering of phonons by magnons peaks at twice the average Nd magnon frequency.Comment: 4 pages, 3 figures, one figure modifie

    Spherically symmetric scalar field collapse in any dimension

    Get PDF
    We describe a formalism and numerical approach for studying spherically symmetric scalar field collapse for arbitrary spacetime dimension d and cosmological constant Lambda. The presciption uses a double null formalism, and is based on field redefinitions first used to simplify the field equations in generic two-dimensional dilaton gravity. The formalism is used to construct code in which d and Lambda are input parameters. The code reproduces known results in d = 4 and d = 6 with Lambda = 0. We present new results for d = 5 with zero and negative Lambda.Comment: 16 pages, 6 figures, typos corrected, presentational changes, PRD in pres

    Kondo effect in transport through molecules adsorbed on metal surfaces: from Fano dips to Kondo peaks

    Full text link
    The Kondo effect observed in recent STM experiments on transport through CoPc and TBrPP-Co molecules adsorbed on Au(111) and Cu(111) surfaces, respectively, is discussed within the framework of a simple model (Phys. Rev. Lett. {\bf 97}, 076806 (2006)). It is shown that, in the Kondo regime and by varying the adequate model parameters, it is possible to produce a crossover from a conductance Kondo peak (CoPc) to a conductance Fano dip (TBrPP-Co). In the case of TBrPP-Co/Cu(111) we show that the model reproduces the changes in the shape of the Fano dip, the raising of the Kondo temperature and shifting to higher energies of the dip minimum when the number of nearest neighbors molecules is lowered. These features are in line with experimental observations indicating that our simple model contains the essential physics underlying the transport properties of such complex molecules.Comment: 4 pages, 3 figures, submitted to PR

    Real-Time Maps of Fluid Flow Fields in Porous Biomaterials

    Full text link
    Mechanical forces such as fluid shear have been shown to enhance cell growth and differentiation, but knowledge of their mechanistic effect on cells is limited because the local flow patterns and associated metrics are not precisely known. Here we present real-time, noninvasive measures of local hydrodynamics in 3D biomaterials based on nuclear magnetic resonance. Microflow maps were further used to derive pressure, shear and fluid permeability fields. Finally, remodeling of collagen gels in response to precise fluid flow parameters was correlated with structural changes. It is anticipated that accurate flow maps within 3D matrices will be a critical step towards understanding cell behavior in response to controlled flow dynamics.Comment: 23 pages, 4 figure
    corecore