Crystal nucleation and growth processes induced by an externally applied
shear strain in a model metallic glass are studied by means of nonequilibrium
molecular dynamics simulations, in a range of temperatures. We observe that the
nucleation-growth process takes place after a transient, induction regime. The
critical cluster size and the lag-time associated with this induction period
are determined from a mean first-passage time analysis. The laws that describe
the cluster growth process are studied as a function of temperature and strain
rate. A theoretical model for crystallization kinetics that includes the time
dependence for nucleation and cluster growth is developed within the framework
of the Kolmogorov-Johnson-Mehl-Avrami scenario and is compared with the
molecular dynamics data. Scalings for the cluster growth laws and for the
crystallization kinetics are also proposed and tested. The observed nucleation
rates are found to display a nonmonotonic strain rate dependency