3,178 research outputs found
Disorder Induced Localized States in Graphene
We consider the electronic structure near vacancies in the half-filled
honeycomb lattice. It is shown that vacancies induce the formation of localized
states. When particle-hole symmetry is broken, localized states become
resonances close to the Fermi level. We also study the problem of a finite
density of vacancies, obtaining the electronic density of states, and
discussing the issue of electronic localization in these systems. Our results
also have relevance for the problem of disorder in d-wave superconductors.Comment: Replaced with published version. 4 pages, 4 figures. Fig. 1 was
revise
Localized states at zigzag edges of bilayer graphene
We report the existence of zero energy surface states localized at zigzag
edges of bilayer graphene. Working within the tight-binding approximation we
derive the analytic solution for the wavefunctions of these peculiar surface
states. It is shown that zero energy edge states in bilayer graphene can be
divided into two families: (i) states living only on a single plane, equivalent
to surface states in monolayer graphene; (ii) states with finite amplitude over
the two layers, with an enhanced penetration into the bulk. The bulk and
surface (edge) electronic structure of bilayer graphene nanoribbons is also
studied, both in the absence and in the presence of a bias voltage between
planes.Comment: 4 pages, 5 figure
Bilayer graphene: gap tunability and edge properties
Bilayer graphene -- two coupled single graphene layers stacked as in graphite
-- provides the only known semiconductor with a gap that can be tuned
externally through electric field effect. Here we use a tight binding approach
to study how the gap changes with the applied electric field. Within a parallel
plate capacitor model and taking into account screening of the external field,
we describe real back gated and/or chemically doped bilayer devices. We show
that a gap between zero and midinfrared energies can be induced and externally
tuned in these devices, making bilayer graphene very appealing from the point
of view of applications. However, applications to nanotechnology require
careful treatment of the effect of sample boundaries. This being particularly
true in graphene, where the presence of edge states at zero energy -- the Fermi
level of the undoped system -- has been extensively reported. Here we show that
also bilayer graphene supports surface states localized at zigzag edges. The
presence of two layers, however, allows for a new type of edge state which
shows an enhanced penetration into the bulk and gives rise to band crossing
phenomenon inside the gap of the biased bilayer system.Comment: 8 pages, 3 fugures, Proceedings of the International Conference on
Theoretical Physics: Dubna-Nano200
Phenomenological study of the electronic transport coefficients of graphene
Using a semi-classical approach and input from experiments on the
conductivity of graphene, we determine the electronic density dependence of the
electronic transport coefficients -- conductivity, thermal conductivity and
thermopower -- of doped graphene. Also the electronic density dependence of the
optical conductivity is obtained. Finally we show that the classical Hall
effect (low field) in graphene has the same form as for the independent
electron case, characterized by a parabolic dispersion, as long as the
relaxation time is proportional to the momentum.Comment: 4 pages, 1 figur
Modeling disorder in graphene
We present a study of different models of local disorder in graphene. Our
focus is on the main effects that vacancies -- random, compensated and
uncompensated --, local impurities and substitutional impurities bring into the
electronic structure of graphene. By exploring these types of disorder and
their connections, we show that they introduce dramatic changes in the low
energy spectrum of graphene, viz. localized zero modes, strong resonances, gap
and pseudogap behavior, and non-dispersive midgap zero modes.Comment: 16 pages, lower resolution figure
Electron waves in chemically substituted graphene
We present exact analytical and numerical results for the electronic spectra
and the Friedel oscillations around a substitutional impurity atom in a
graphene lattice. A chemical dopant in graphene introduces changes in the
on-site potential as well as in the hopping amplitude. We employ a T-matrix
formalism and find that disorder in the hopping introduces additional
interference terms around the impurity that can be understood in terms of
bound, semi-bound, and unbound processes for the Dirac electrons. These
interference effects can be detected by scanning tunneling microscopy.Comment: 4 pages, 7 figure
Climate change will reduce suitable Caatinga dry forest habitat for endemic plants with disproportionate impacts on specialized reproductive strategies
Global climate change alters the dynamic of natural ecosystems and directly affects species distributions, persistence and diversity. The impacts of climate change may lead to dramatic changes in biotic interactions, such as pollination and seed dispersal. Life history traits are extremely important to consider the vulnerability of a species to climate change, producing more robust models than those based primarily on species distributions. Here, we hypothesized that rising temperatures and aridity will reduce suitable habitats for the endemic flora of the Caatinga, the most diverse dry tropical forest on Earth. Specifically, species with specialized reproductive traits (e.g. vertebrate pollination, biotic dispersal, obligatory cross-pollination) should be more affected by climate change than those with generalist traits. We performed two ecological niche models (current and future) to simulate the effects of climate change on the distribution area of endemic species in relation to life-history traits. We used the MIROC-ESM and CCSM4 models for both intermediate (RCP4.5) and highest predicted (RCP8.5) GHG emission scenarios, with a resolution of 30' (~1 km2). Habitat with high occurrence probability (>80%) of endemic species will be reduced (up to ~10% for trees, ~13% for non-arboreous, 10-28% for species with any pollination/reproductive system), with the greatest reductions for species with specialized reproductive traits. In addition, the likely concentration of endemic plants in the extreme northeastern portion of the Caatinga, in more mesic areas, coincides with the currently most human-modified areas of the ecosystem, which combined with climate change will further contract suitable habitats of endemic species. In conclusion, plant species endemic to the Caatinga are highly vulnerable to even conservative scenarios of future climate change and may lose much of their climatic envelopes. New protected areas should be located in the northeastern portion of the Caatinga, which hosts a more favorable climate, but is currently exposed to escalating agricultural intensification
- …
