20,631 research outputs found

    Distinct dynamical behavior in Erd\H{o}s-R\'enyi networks, regular random networks, ring lattices, and all-to-all neuronal networks

    Get PDF
    Neuronal network dynamics depends on network structure. In this paper we study how network topology underpins the emergence of different dynamical behaviors in neuronal networks. In particular, we consider neuronal network dynamics on Erd\H{o}s-R\'enyi (ER) networks, regular random (RR) networks, ring lattices, and all-to-all networks. We solve analytically a neuronal network model with stochastic binary-state neurons in all the network topologies, except ring lattices. Given that apart from network structure, all four models are equivalent, this allows us to understand the role of network structure in neuronal network dynamics. Whilst ER and RR networks are characterized by similar phase diagrams, we find strikingly different phase diagrams in the all-to-all network. Neuronal network dynamics is not only different within certain parameter ranges, but it also undergoes different bifurcations (with a richer repertoire of bifurcations in ER and RR compared to all-to-all networks). This suggests that local heterogeneity in the ratio between excitation and inhibition plays a crucial role on emergent dynamics. Furthermore, we also observe one subtle discrepancy between ER and RR networks, namely ER networks undergo a neuronal activity jump at lower noise levels compared to RR networks, presumably due to the degree heterogeneity in ER networks that is absent in RR networks. Finally, a comparison between network oscillations in RR networks and ring lattices shows the importance of small-world properties in sustaining stable network oscillations.Comment: 9 pages, 4 figure

    Majorana Fermions Signatures in Macroscopic Quantum Tunneling

    Full text link
    Thermodynamic measurements of magnetic fluxes and I-V characteristics in SQUIDs offer promising paths to the characterization of topological superconducting phases. We consider the problem of macroscopic quantum tunneling in an rf-SQUID in a topological superconducting phase. We show that the topological order shifts the tunneling rates and quantum levels, both in the parity conserving and fluctuating cases. The latter case is argued to actually enhance the signatures in the slowly fluctuating limit, which is expected to take place in the quantum regime of the circuit. In view of recent advances, we also discuss how our results affect a π\pi-junction loop.Comment: 10 pages, 11 figure

    Neural networks with dynamical synapses: from mixed-mode oscillations and spindles to chaos

    Full text link
    Understanding of short-term synaptic depression (STSD) and other forms of synaptic plasticity is a topical problem in neuroscience. Here we study the role of STSD in the formation of complex patterns of brain rhythms. We use a cortical circuit model of neural networks composed of irregular spiking excitatory and inhibitory neurons having type 1 and 2 excitability and stochastic dynamics. In the model, neurons form a sparsely connected network and their spontaneous activity is driven by random spikes representing synaptic noise. Using simulations and analytical calculations, we found that if the STSD is absent, the neural network shows either asynchronous behavior or regular network oscillations depending on the noise level. In networks with STSD, changing parameters of synaptic plasticity and the noise level, we observed transitions to complex patters of collective activity: mixed-mode and spindle oscillations, bursts of collective activity, and chaotic behaviour. Interestingly, these patterns are stable in a certain range of the parameters and separated by critical boundaries. Thus, the parameters of synaptic plasticity can play a role of control parameters or switchers between different network states. However, changes of the parameters caused by a disease may lead to dramatic impairment of ongoing neural activity. We analyze the chaotic neural activity by use of the 0-1 test for chaos (Gottwald, G. & Melbourne, I., 2004) and show that it has a collective nature.Comment: 7 pages, Proceedings of 12th Granada Seminar, September 17-21, 201

    Critical and resonance phenomena in neural networks

    Full text link
    Brain rhythms contribute to every aspect of brain function. Here, we study critical and resonance phenomena that precede the emergence of brain rhythms. Using an analytical approach and simulations of a cortical circuit model of neural networks with stochastic neurons in the presence of noise, we show that spontaneous appearance of network oscillations occurs as a dynamical (non-equilibrium) phase transition at a critical point determined by the noise level, network structure, the balance between excitatory and inhibitory neurons, and other parameters. We find that the relaxation time of neural activity to a steady state, response to periodic stimuli at the frequency of the oscillations, amplitude of damped oscillations, and stochastic fluctuations of neural activity are dramatically increased when approaching the critical point of the transition.Comment: 8 pages, Proceedings of 12th Granada Seminar, September 17-21, 201
    • …
    corecore