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Neuronal network dynamics depends on network structure. In this paper we study how network topology
underpins the emergence of different dynamical behaviors in neuronal networks. In particular, we consider
neuronal network dynamics on Erdős-Rényi (ER) networks, regular random (RR) networks, ring lattices, and
all-to-all networks. We solve analytically a neuronal network model with stochastic binary-state neurons in
all the network topologies, except ring lattices. Given that apart from network structure, all four models are
equivalent, this allows us to understand the role of network structure in neuronal network dynamics. While ER
and RR networks are characterized by similar phase diagrams, we find strikingly different phase diagrams in
the all-to-all network. Neuronal network dynamics is not only different within certain parameter ranges, but
it also undergoes different bifurcations (with a richer repertoire of bifurcations in ER and RR compared to
all-to-all networks). This suggests that local heterogeneity in the ratio between excitation and inhibition plays
a crucial role on emergent dynamics. Furthermore, we also observe one subtle discrepancy between ER and
RR networks, namely, ER networks undergo a neuronal activity jump at lower noise levels compared to RR
networks, presumably due to the degree heterogeneity in ER networks that is absent in RR networks. Finally, a
comparison between network oscillations in RR networks and ring lattices shows the importance of small-world
properties in sustaining stable network oscillations.
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I. INTRODUCTION

The brain is an enormous network of neurons connected
by synapses. Neurons are dynamical systems whose dynamics
depends on the interaction with other neurons. Understanding
how network structure shapes emergent neuronal dynamics
is of fundamental importance to unveil the workings of the
brain. Modeling of neuronal networks has often considered
neurons connected in all-to-all or random networks (see, e.g.,
Refs. [1–6]).

Many models in statistical physics, including the Ising,
Potts, Kuramoto, and other models, demonstrate the standard
mean-field behavior in random networks, as in all-to-all net-
works, provided that the heterogeneity of the network is suffi-
ciently weak, namely, when the second moment of the degree
distribution is finite [7–9]. Additionally, the annealed network
approximation by which an uncorrelated random network may
be replaced by a weighted all-to-all network [8–10] further
suggests that representing a random network with an all-to-
all network may be an acceptable approximation. Regular
random (RR) networks have also been used to obtain mean-
field solutions which, depending on the applications, may
be concordant with both random and all-to-all networks [8]
(note that in RR networks all nodes have the same number
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of connections, i.e., the same degree, in contrast to random
networks where node degree varies between nodes). However,
such concordance depends on how nodes interact with each
other. In the case of neuronal networks, it has long been under-
stood that random and all-to-all networks underpin different
emergent dynamics [11], and careful considerations have been
devoted to random networks [2,12,13].

Herein we aim to better understand how network topology
underpins the emergence of different dynamical behaviors
in neuronal networks. We will consider the same neuronal
model across Erdős-Rényi (ER) networks, RR networks, ring
lattices, and all-to-all networks, so that differences may only
result from network topology. We focus on these four pro-
totypical network structures because they enable us to reveal
the role of key topological properties in the dynamics. On the
other hand, ER, RR, and all-to-all networks are sufficiently
simple to allow an analytical treatment. Although all-to-all
networks (complete graphs), RR, and ER networks are all
infinite dimensional systems [14], they have different topo-
logical and structural properties. In both ring lattices and RR
networks considered in this paper, all nodes have the same
degree; however, in RR networks the nodes are randomly
connected with other nodes, whereas in ring lattices they are
connected to their closest neighbors. In ER networks, nodes
are not only connected at random but also their degree varies
across nodes. In all-to-all networks, all nodes are connected
to all other nodes and therefore the distance between any
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two nodes is one, in contrast with RR and ER networks
where the mean distance between any two nodes increases
logarithmically with increasing size N , i.e., as log(N ), which
also differs from the power-law dependence N1/d in any d-
dimensional lattice, particularly in a ring lattice where the
distance increases linearly with N . As a result the mean
distance between any two nodes in random complex networks,
including RR networks, is much smaller on average than in
any d-dimensional lattice of the same size [15]. This small-
world property enhances synchronization between interact-
ing units in random complex networks [16]. Additionally,
clustering is large in all-to-all networks, whereas in RR and
ER networks it is zero in the thermodynamic limit. Such
differences may help us understand the role of network het-
erogeneity in emergent dynamics, namely, whether synchro-
nization is mostly promoted by clustering, or small-world
properties.

II. MODEL

We consider the neuronal network model introduced in
Refs. [17,18] and further studied in Refs. [19–21]. The net-
work consists of N neurons, geN excitatory neurons, and
giN inhibitory neurons (ge + gi = 1). Neurons can either be
active and fire spike trains or be inactive and stay silent.
Their state is a function of positive currents coming from
presynaptic excitatory neurons and negative currents from
presynaptic inhibitory neurons. Additionally, neurons are also
stimulated by noise which accounts for both internal and
external stochastic processes that may influence neuronal
dynamics [22]. The neurons act as stochastic integrators: they
sum their input currents during an integration time τ and
switch their dynamical state with probability μaτ depending
on whether the input is larger or smaller than a threshold �.
More specifically, an inactive excitatory (inhibitory) neuron
becomes active with probability μeτ (μiτ ) if its total input
current is larger than �. Conversely, an active neuron becomes
inactive with probability μaτ if its total input current is
smaller than � (μa = μe for excitatory neurons, and μa =
μi for inhibitory neurons). μ−1

e and μ−1
i are the first-spike

latencies of excitatory and inhibitory neurons, respectively.
As we shall see, the ratio α = μi/μe plays an important role
in the model by controlling the relative response times of
excitatory and inhibitory neurons.

We define the fractions of active excitatory and in-
hibitory neurons at time t , ρe(t ) and ρi(t ), to characterize
the neuronal network dynamics. We will refer to these frac-
tions as activities. These activities follow the rate equations
[17,18]

ρ̇a

μa
= −ρa + �a(ρe, ρi ), (1)

where a = e, i, ρ̇ ≡ dρ/dt , and �a(ρe, ρi ) is the probability
of a randomly chosen neuron to become active at time t .
This function �a encodes all information concerning single
neuron dynamics, noise, and network structure. We will con-
sider four network topologies: Erdős-Rényi networks, reg-
ular random networks, random ring lattices, and all-to-all
networks.

A. Erdős-Rényi network

We have previously solved the model in the case where
neurons are connected in a Erdős-Rényi network [17,18].
We found the heterogeneous mean-field function �a(ρe, ρi ) ≡
�ER(ρe, ρi ),

�ER(ρe, ρi ) =
∞∑

k,l,n=0

�(Jek + Jil + n − �)

× Pk (geρec)Pl (giρic)G(n, 〈n〉, σ ). (2)

The function considers a randomly chosen neuron that inte-
grates k spikes from excitatory presynaptic neurons, l spikes
from inhibitory presynaptic neurons, and n spikes from noise.
Je and Ji are synaptic efficacies that weight these contribu-
tions (Je > 0 and Ji < 0). �(x) is the Heaviside step func-
tion, �(x) = 1 if Jek + Jil + n > �, otherwise �(x) = 0. The
numbers of excitatory and inhibitory spikes, k and l , follow
a Poisson distribution, Pn(λ) ≡ λne−λ/n!, that accounts for
the random structure [17]. The average number of spikes λ is
gaρac, where c is the mean in-degree, and it accounts for the
average fraction of active presynaptic neurons in population
a. The noise follows a Gaussian distribution G(n, 〈n〉, σ ) with
mean 〈n〉 and variance σ 2 as in Refs. [18,20,21]. For more
details about the derivation of this function, see Refs. [17,18].

B. Regular random network

To study the role of topology in neuronal network dynam-
ics, and particularly the role of randomness of the topology,
we also consider neurons connected in a RR network. In this
case, neurons are connected at random but the number of
incoming (presynaptic) connections is constant and equal c.
Thus, different neurons are connected to different numbers
of excitatory and inhibitory neurons, though the total number
of connections of every neuron is the same. The probability
p1(n) that a randomly chosen neuron has n excitatory and
c − n inhibitory presynaptic neighbors is

p1(n) =
(

c

n

)
gn

egc−n
i , (3)

where (c
n) is the binomial coefficient, c!/(n!(c − n)!). Con-

sequently, the probability p2(k, l ) that a randomly chosen
neuron receives k spikes from active excitatory neurons and
l spikes from active inhibitory neurons during an integration
time τ is

p2(k, l ) =
c−l∑
n�k

p1(n)

(
n

k

)
ρk

e (1 − ρe)n−k

×
(

c − n

l

)
ρ l

i (1 − ρi )
c−n−l . (4)

Here we define that an active neuron fires one spike per in-
tegration time. This assumption provides qualitatively equiv-
alent neuronal network dynamics when compared to lower
or higher spiking rates in this model [17]. The probability
p2(k, l ) can be further simplified by using the binomial the-
orem,

p2(k, l ) = c!
(geρe)k

k!

(giρi )l

l!

(1 − geρe − giρi )c−k−l

(c − k − l )!
, (5)
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and by introducing the Poisson distribution,

p2(k, l ) = c!ec

cc
Pk (geρec)Pl (giρic)

× Pc−l−k (c[1 − geρe − giρi]). (6)

Thus, one can show that the probability of a randomly chosen
neuron to be active in the RR network is

�RR(ρe, ρi ) =
∞∑

n=0

c∑
k=0

c−k∑
l=0

�(Jek + Jil + n − �)

× p2(k, l )G(n, 〈n〉, σ ), (7)

where we sum over all possible numbers of incoming spikes
from noise (n), active excitatory presynaptic neighbors (k),
and active inhibitory presynaptic neighbors (l). The Heaviside
step function imposes that a neuron may only become active if
Jek + Jil + n > �, p2(k, l ) defines the probability of receiv-
ing k and l spikes from presynaptic neurons, and G(n, 〈n〉, σ )
is the probability of being excited by n spikes from noise.
By substituting Eq. (6) into Eq. (7) and using Stirling’s
approximation, truncating the sum over n, and rearranging the
sums, we obtain

�RR(ρe, ρi ) ≈
√

2πc
c∑

k=0

Pk (geρec)
c−k∑
l=0

Pl (giρic)

× Pc−l−k (c[1 − geρe − giρi])

×
〈n〉+3σ∑

n=�−Jek−Jil

G(n, 〈n〉, σ ). (8)

Note that �RR differs from �ER in three aspects: (i) the coeffi-
cient

√
2πc; (ii) the sums over k and l are truncated (given that

neurons may receive spikes from up to c presynaptic neurons);
and (iii) the function Pc−l−k (c[1 − geρe − giρi]).

C. Ring lattice

To further understand the role of randomness in the topol-
ogy in emerging network dynamics, we also consider ring
lattices. In this case, each node on a ring with N nodes is
connected to all nodes placed at a distance smaller or equal
to c. For simplicity, we consider all connections with the
same direction, i.e., all connections coming from the left are
in-connections, whereas all connections to the right are out-
connections. Finally, Nge excitatory and Ngi inhibitory neu-
rons are distributed at random over the N nodes. (Undirected
regular ring lattices were used in the seminal paper of Watts
and Strogatz [15] to build small-world networks: small-world
properties were obtained by randomly rewiring a fraction of
all connections of the lattice.) Note that in the RR network,
neurons are connected at random and consequently the mean
distance between any two neurons increases as log(N ), which
is much smaller than the mean distance between two neurons
in the ring lattice where the distance grows linearly with the
system size N . However, the considered directed ring lattice
has the same distribution of pre- and postsynaptic excitatory
and inhibitory neurons as the RR network. As in RR networks,
each neuron in a ring lattice is connected to a random number
ne of excitatory and ni of inhibitory presynaptic neurons,
whose sum ne + ni is c. For this network topology we do not

have an analytical solution and consequently we limited our
analysis to simulations of large networks of size N = 104 and
N = 105. We explain the algorithm to generate simulations
below, in Sec. II E.

D. All-to-all network

Finally, we further consider neurons connected in an all-to-
all network, where every neuron is topologically equivalent to
all other neurons. While from the ER to the RR network we
removed randomness from the topology but kept randomness
in the distribution of excitatory and inhibitory neurons across
the network, from the regular to the all-to-all network we are
also removing this heterogeneity: all neurons are connected
to the same number of excitatory and inhibitory neurons. In
this case, every neuron receives spikes from all other active
neurons in the network,

Jek = Jegeρe(N − 1) = J̃egeρe,

Jil = Jigiρi(N − 1) = J̃igiρi, (9)

where we use the standard normalizations, Je → J̃e/(N − 1)
and Ji → J̃i/(N − 1). Note that these normalizations imply
that both the noise intensity n and threshold � must be
rescaled. Given that, in the case of ER networks, the input
current in Eq. (2) is proportional to the mean in-degree c,
for the sake of comparison we define η = n/c, ω = �/c, and
consequently 〈η〉 = 〈n〉/c, and σ̃ = σ/c. We thus find the �all

function for an all-to-all network,

�all(ρe, ρi ) =
∞∑

η=0

�(J̃egeρe + J̃igiρi + η − ω)G(η, 〈η〉, σ̃ ).

(10)

As above, we consider Gaussian noise and therefore
�all(ρe, ρi ) can be written as

�all(ρe, ρi ) = 


(
J̃egeρe + J̃igiρi + 〈η〉 − ω

σ̃

)
, (11)

where 
(x) is the cumulative distribution function of the
standard normal distribution [23],


(x) = 1√
2π

∫ x

−∞
e−x2/2dt . (12)

Thus, the neuronal network dynamics in all-to-all networks
are governed by the following rate equations:

ρ̇a

μa
= −ρa + 


(
J̃egeρe + J̃igiρi + 〈η〉 − ω

σ̃

)
, (13)

where a = e, i.

E. Parameters and numerical simulations

We consider the following model parameters. In ER net-
works, RR networks, and ring lattices we use the mean in-
degree c = 1000, the threshold � = 30, the integration time
τ = 0.1μ−1

e , the synaptic efficacies Je = 1 and Ji = −3, and
the noise variance σ 2 = 10. These parameters have been
discussed and justified elsewhere [17,18,20]. Analogously, in
all-to-all networks we use ω = �/c = 0.03, the integration
time τ = 0.1μ−1

e , J̃e = 1, J̃i = −3, and σ̃ 2 = (σ/c)2 = 10−5.
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The algorithm employed in our numerical simulations was
explained in [17,18]. Briefly, we constructed directed ER net-
works by connecting neurons with probability c/N , whereas
to obtain directed regular networks we built regular ring
lattices and rewired links randomly while preserving the
degree distribution using the Maslov-Sneppen rewiring algo-
rithm [24]. Ring lattices were obtained by connecting each
neuron to its closest c presynaptic neighbors. Finally, all-to-all
networks were built by connecting all nodes to all other nodes
except themselves. In all network topologies, nodes were
randomly assigned as being excitatory or inhibitory, such that
the total number of excitatory and inhibitory neurons were
geN and giN , respectively. Time was discretized into inter-
vals �t = τ . We initialized our simulations with all neurons
inactive. We then evaluated at each time step whether the total
input to each node was higher or lower than the threshold �.
The total input accounted for all presynaptic active neurons
and Gaussian noise as described above. Subsequently, the
state of all neurons was updated in parallel at every time step
depending on the individual total inputs following the rules
stated above.

III. STEADY STATES

To characterize and compare the neuronal dynamics across
different network topologies, we first find the steady states in
each network. In this section we focus on ER, regular, and
all-to-all networks, leaving out ring lattices, for which we
do not have an analytical solution. The neuronal networks
reach a steady state when dρa/dt = 0. In all three networks,
steady excitatory activity is equal to steady inhibitory activity,
ρe = ρi ≡ ρ. In ER and RR networks, we find the steady-state
equations

ρ = �ER(ρ, ρ) (14)

and

ρ = �RR(ρ, ρ), (15)

respectively. Similarly, we find the steady-state equation in
all-to-all networks

ρ = 


(
J̃egeρ + J̃igiρ + 〈η〉 − ω

σ̃

)
. (16)

Solutions of these equations were obtained by solving numer-
ically the right-hand side for 800 values of ρ in the range [0,1]
and then finding the graphical intersection with ρ.

Figure 1 shows the steady states ρ as a function of the noise
intensity in networks with different fractions of excitatory
neurons ge. The noise has an excitatory effect on neurons
and as a result ρ grows with increasing noise. We also find
a strong dependence of ρ on ge. Note that at ge = 0.75
the network is balanced, i.e., geJe = gi|Ji|, and therefore the
quantity Jegeρe + Jigiρi = (Jege + Jigi )ρ is zero at the steady
states, while it is negative at ge = 0.74 and positive at ge =
0.76. We observe that larger fractions of ge are responsible
for more pronounced increases of ρ as a function of noise.
However, although we find a bistability region bounded by
activity jumps in both ER and RR networks at intermedi-
ate noise levels (panels in the left and middle columns),
all-to-all networks show no bistability when ge = 0.74 and
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FIG. 1. Steady-state neuronal activity ρ as a function of the level
of noise 〈n〉/c and 〈η〉 in ER (left column), RR (middle column), and
all-to-all networks (right column). These steady states are the result
of the numerical integration of Eqs. (14)–(16). Each row corresponds
to networks with different fractions of excitatory neurons: (a)–(c)
ge = 0.74, (d)–(f) ge = 0.75, and (g)–(i) ge = 0.76. The dashed lines
represent upper metastable states in bistability regions where ρ may
take low or high activity values depending on the initial conditions.

ge = 0.75, and instead ρ grows gradually with increasing
noise 〈η〉. The steepness of ρ as a function of 〈η〉 gets higher
with increasing ge, and a bistability region emerges when the
steepness becomes infinite. Panel (i) further shows that the
bistability region appears in all-to-all networks only at ge >

0.75, bounded by 〈η〉 = 0. In contrast, ER and RR networks
display a bistability region at ge both above and below 0.75,
and at ge = 0.76 the region is bounded by a bifurcation point
〈n〉 > 0. Finally, we observe that although the steady states
in ER and RR networks are very similar, the bifurcation
point at which there is an activity jump is slightly higher in
RR networks compared to ER networks. We interpret this
difference as a consequence of a lower heterogeneity in RR
networks compared to ER networks. In ER networks there
is a higher chance of finding neurons with higher number
of presynaptic excitatory neurons compared to RR networks,
given that in RR networks neurons have at most c excitatory
presynaptic neurons. A higher number of “hyperexcitable”
neurons may enable ER networks to jump to higher activities
at lower levels of noise.

IV. PHASE DIAGRAMS AND DYNAMICS

To further characterize the neuronal dynamics, we study
the local stability of the fixed points determined by Eqs. (14)–
(16) [18,25]. This stability is determined by the eigenvalues
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of the Jacobian of Eqs. (1),

Ĵ (ρ) =
(−1 + ∂�/∂ρe ∂�/∂ρi

α∂�/∂ρe −α + α∂�/∂ρi

)
, (17)

at the fixed points ρ. In the case of the all-to-all network, the
Jacobian of the dynamical system described by Eqs. (13) is

Ĵ (ρ) =
(−1 + J̃egeG(x) J̃igiG(x)

αJ̃egeG(x) −α + αJ̃igiG(x)

)
, (18)

where G(x) is the Gaussian distribution with zero mean and
standard deviation σ̃ ,

G(x) = 1√
2πσ̃ 2

e−x2/2σ̃ 2
, (19)

and x = J̃egeρ + J̃igiρ + 〈η〉 − ω.
The eigenvalues of the Jacobian matrices are given by

λ± = − 1
2 (J11 + J22) ± 1

2

√
(J11 − J22)2 + 4J12J21, (20)

where Ji j are the entries of the Jacobian.
To find phase boundaries separating different dynamical

behaviors in ER, RR, and all-to-all networks, we solve the
conditions

Re{λ±} = 0 (21)

and

Im{λ±} = 0. (22)

The fact that the steady-state equations (14)–(16) do not
depend on α allows us to find α as a function of the level
of noise at which these conditions, Eqs. (21) and (22), are
satisfied. Additionally, we solve the equation

∂�(ρ, ρ)

∂ρ
= 1 (23)

which determines the level of noise at which the neuronal
activity jumps observed in Fig. 1 take place. This condi-
tion actually defines the coalescence or emergence of fixed
points, i.e., the bifurcation point at which the steady-state
equations (14)–(16) transit from one solution to three, or vice
versa [18]. We have previously demonstrated that the jumps
correspond to saddle-node bifurcations [18].

Figure 2 shows the numerical solutions of Eqs. (21)–(23) in
noise–α planes at different fractions of excitatory neurons ge

for the three network topologies. We identify four regions of
neuronal activity: in region I the activity relaxes exponentially
to a low activity state; region II is a bistability region where the
lower and upper metastable states may be stable or unstable
(see Ref. [18] for more details); region III corresponds to
sustained network oscillations; and in regions IVa and IVb
the activity relaxes exponentially and in the form of damped
oscillations to a high activity state, respectively. Note that
in all-to-all networks (at ge = 0.74, 0.75), the absence of a
saddle-node bifurcation enables regions I and IVa to form a
continuum from low to high activity at sufficiently high α

[region I+IVa in Figs. 2(c) and 2(f)]. We observe that as we
increase the fraction of excitatory neurons ge, the region of
neuronal network oscillations shrinks in the three network
topologies. At ge = 0.76, the all-to-all network no longer
displays network oscillations in striking contrast with ER and
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FIG. 2. Noise–α planes of the phase diagram of the neuronal
network models. Left, middle, and right columns correspond, re-
spectively, to ER, RR, and all-to-all networks. Each row represents
networks with different fractions of excitatory neurons: (a)–(c) ge =
0.74, (d)–(f) ge = 0.75, and (g)–(i) ge = 0.76. There are four regions
of activity: (I) low neuronal activity; (II) bistability region; (III)
neuronal network oscillations; and (IV) high neuronal activity with
(a) exponential relaxation and (b) damped oscillations. All-to-all
networks have a region I+IVa which contains a continuum from
low to high activity as a function of increasing noise intensity η.
The black and yellow solid lines are the numerical solutions of
Eq. (21), whereas the black dashed lines are the numerical solutions
of Eq. (22). The black solid lines correspond to supercritical Hopf
bifurcations and the yellow solid lines represent subcritical Hopf
bifurcations. The red lines correspond to saddle-node bifurcations
determined by Eq. (23).

RR networks which present a large area in parameter space
with oscillations. Furthermore, we find that while region III
in Figs. 2(a) and 2(b), 2(d) and 2(e), and 2(g) and 2(h) is
bounded on the left (at a low noise intensity) by a saddle node
on invariant circle (SNIC) bifurcation and, on the right (at a
high noise intensity), by a supercritical Hopf bifurcation in ER
and RR networks, instead oscillations in all-to-all networks
emerge only due to a subcritical Hopf bifurcation. Thus, in ER
and RR networks oscillations emerge above the bifurcation
point nc1 of the SNIC bifurcation with a finite amplitude but a
small frequency proportional to (〈n〉 − nc1)1/2, whereas close
to the supercritical Hopf bifurcation, the oscillations have a fi-
nite frequency with an amplitude that decreases proportionally
to (nc2 − 〈n〉)1/2 as we approach the bifurcation point nc2. In
contrast, in all-to-all networks oscillations emerge with both
finite amplitude and frequency. In this case, however, there
is a narrow parameter range with hysteresis, where the all-
to-all network displays either damped oscillations or network
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FIG. 3. Excitatory activity ρe as a function of time in ER (left
column), and all-to-all networks (right column). Panels (a) and (b)
display low activity from region I in Fig. 2, (〈n〉/c, α) = (〈η〉, α) =
(0.015, 0.7); panels (c) and (d) represent high activity from region
IVb in ER networks and IVa in all-to-all networks, (〈n〉/c, α) =
(〈η〉, α) = (0.05, 0.9); and panels (e) and (f) show network oscilla-
tions from region III, (〈n〉/c, α) = (〈η〉, α) = (0.03, 0.7). The black
lines are the numerical solution of Eq. (1) for each network topology,
and the blue triangles represent numerical simulations of the model
(number of neurons N = 105). We used a fraction of excitatory
neurons ge = 0.75.

oscillations depending on the initial conditions (this region is
not represented in Fig. 2). Again, the only clear difference
between ER and RR networks is the level of noise at which
the SNIC bifurcation takes place: at a lower level of noise in
ER networks compared to RR networks.

Figure 3 displays representative neuronal network activity
in three of the regions identified in Fig. 2. We chose equivalent
parameters in the three networks corresponding to comparable
regions of the phase diagrams, but decided to only show
here the activity in ER and all-to-all networks because RR
networks displayed activities almost indistinguishable from
the activities in ER networks. As expected taking into account
Fig. 1, the steady states are quantitatively different across
the three networks, though qualitatively similar. However,
we observe that network oscillations in all-to-all networks
have a different shape compared to oscillations in ER and
RR networks, where they are almost equivalent [compare
Fig. 3(e) and Fig. 4(c)]. Figure 3 also shows the result of
simulations using networks comprising 105 neurons. Note
that in the low activity state, panels (a) and (b), the activity
ρe is smaller than 1/N , hence most neurons are silent most
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FIG. 4. Network oscillations in RR networks (left column), and
in ring lattices (right column). As in Fig. 3, the blue triangles repre-
sent numerical simulations of the model in finite networks. The black
lines are the numerical solution of Eq. (1) for RR networks. The same
numerical solutions are plotted as dashed lines in the right column for
comparison with the simulations in finite ring lattices. Panels (a) and
(b) correspond to networks with size N = 104, whereas panels (c)
and (d) display oscillations in networks with size N = 105. We used
the same parameters in all the panels: (〈n〉/c, α) = (0.03, 0.7), and a
fraction of excitatory neurons ge = 0.75.

of the time in the simulations except for occasional random
firings. For comparison, we observed the steady states ρe =
(2.08 × 10−6, 0, 1.05 × 10−6) from the numerical integration
of Eq. (1) for ER, RR, and all-to-all networks, respectively,
which are in good agreement with the average activities
from simulations, 〈ρe〉 = (1.92 × 10−6, 4.27 × 10−7, 9.60 ×
10−7). In RR networks, random fluctuations can also spo-
radically activate neurons, but at a smaller rate compared to
ER and all-to-all networks. In the high activity state, while
neuronal activity fluctuates in ER (and RR) networks close
to the steady states [see panel (c)], it does not in all-to-all
networks [see panel (d)]. In all three networks, we observe
a good agreement with respect to network oscillations when
comparing finite neuronal networks and the numerical inte-
gration of Eq. (1) (corresponding to the infinite-size limit).

We further compared simulations of RR networks with ring
lattices. Note that a ring lattice is in fact a particular network
realization of a RR network, where all neurons happen to
be connected to their closest presynaptic neighbors. The two
networks have the same in- and out-degree distributions of
excitatory and inhibitory neurons. From this perspective, one
could expect similar dynamics. However, as mentioned in
the Introduction, the ring lattice is a one-dimensional system,
whereas RR networks are infinite dimensional systems [14].
We performed simulations of both neuronal network dynam-
ics and indeed observed similar activity patterns, except for
the region of network oscillations. In Fig. 4 we show network
oscillations in RR networks and ring lattices. We observe that
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oscillations present lower and irregular amplitude in finite ring
lattices in striking contrast with network oscillations in finite
RR networks. Furthermore, while oscillations in finite RR
networks approach the analytical solution as we increase the
number of neurons N (see the amplitude), instead they remain
irregular and with lower amplitude in finite ring lattices. Nev-
ertheless, the frequency of the oscillations is similar across
RR and ring lattices.

V. DISCUSSION AND CONCLUSIONS

In this paper, we compared neuronal network dynamics
across Erdős-Rényi networks, regular random networks, ring
lattices, and all-to-all networks using the same neuronal model
in the three topologies. The considered model comprised
stochastic binary-state excitatory and inhibitory neurons in-
teracting together in a network [17,18,20,21]. We found that
network structure has a strong impact on the observed dynam-
ics and bifurcation diagram. In particular, all-to-all networks
underpin strikingly different dynamics compared to ER and
RR networks in certain parameter ranges. On the other hand,
ER and RR networks display very similar dynamics. This
suggests that the randomness in the total number of presy-
naptic excitatory and inhibitory connections does not play a
major role in the dynamics of these networks, provided that
neurons are connected at random. In other words, local hetero-
geneity in the ratio of connections to presynaptic excitatory
and inhibitory neurons may play a crucial role in neuronal
network dynamics, particularly in neuronal oscillations and
critical phenomena in the vicinity of bifurcations, whereas
heterogeneity in the total number of presynaptic connections
seems to be less relevant when we compare ER and RR
networks. Furthermore, we observed that despite similarities
between finite RR networks and finite ring lattices (they have
the same pre- and postsynaptic degree distribution), network
oscillations are fundamentally different in the two networks,
a difference that becomes apparent as we increase the system
size.

Our results in Fig. 1 show that for balanced (geJe = gi|Ji|)
and slightly unbalanced networks toward inhibition (geJe �
gi|Ji|) there is bistability in ER and RR networks but not in all-
to-all networks. At a fraction of excitatory neurons ge = 0.76
we found bistability in all three networks. However, the upper
metastable state in ER and RR networks comprises about half
the neuronal population, whereas the equivalent state in all-
to-all networks involves the whole network. Such differences
may help deciding whether a ER or an all-to-all network
may be more appropriate to model, for example, neuronal
cultures [26]. Interestingly, while we observe that the activity
jump occurs at slightly higher noise levels in RR networks
compared to ER networks, when we do observe a jump also in
the all-to-all network, it occurs at a level of noise comparable
to the one observed in the RR networks (but slightly larger).
This supports our interpretation that ER networks may jump to
the higher metastable state at lower levels of noise compared
to both RR and all-to-all networks due to the existence of
hyperexcitable neurons (i.e., neurons with a higher imbalance
in their excitatory and inhibitory presynaptic neighbors). Such
neurons may also exist in RR networks, but their imbalance is
bounded by the average in-degree.

We found that fixed points characterized by complete
activation of the network (ρ ≈ 1) are incompatible with oscil-
lations in ER, RR, and all-to-all networks. Larger fractions of
excitatory neurons ge in any of these networks lead to higher
activities and consequently we observe that the region of
network oscillations shrinks as we increase ge. Interestingly,
when we observed a region of oscillations in the three network
structures [see Figs. 2(a)–2(f)], this region appears to be sym-
metrical with regard to the level of noise in all-to-all networks,
but not in ER and RR networks. More importantly, oscillations
may emerge due to a SNIC bifurcation or a supercritical
Hopf bifurcation in ER and RR networks, whereas in all-to-all
networks the oscillatory regime is only bounded by a subcriti-
cal Hopf bifurcation, accompanied by hysteresis. Thus, while
oscillations in ER and RR networks may have low frequency
(and high amplitude) close to the SNIC bifurcation, or low
amplitude (and high frequency) close to the supercritical Hopf
bifurcation, in all-to-all networks oscillations have always
finite amplitude and frequency. Although results in Fig. 2 may
seem to suggest that network oscillations vanish in all-to-all
networks when the saddle-node bifurcation emerges, that is
not actually the case. Further numerical analysis revealed that
there is a narrow region of parameters at which the saddle-
node bifurcation coexists with network oscillations in all-
to-all networks; however, the region of network oscillations
remains bounded only by the Hopf bifurcation (results not
presented here).

We also demonstrated that even for parameters at which the
three networks could be expected to be in similar dynamical
regimes, we found some differences (see Fig. 3). While we
found irregular fluctuations around a high activity state in ER
and RR networks, we observed stable full network activation
in all-to-all networks. Additionally, network oscillations also
presented distinctive shapes in ER and RR networks compared
to all-to-all networks. We further compared network oscil-
lations in finite RR networks and finite ring lattices. While
oscillations were stable in RR networks and approached
the analytical solution as we increased the network size N ,
the oscillations in the ring lattices were irregular and the
amplitude seemed to decrease with increasing N . The main
difference between a ring lattice and a RR network is the lack
of small-world properties in the ring lattice, which restrains
synchronization across the network [16]. As the size of the
network increases, the mean distance between nodes increases
linearly with N , and therefore the communication between
neurons is hindered. In fact, it is well known in statistical
physics that any interaction model in a one-dimensional sys-
tem with short-range interactions cannot undergo a phase
transition since fluctuations must destroy any long-ranged
order in one-dimensional systems at large times [27]. Thus,
network oscillations should not emerge in infinite ring lattices.
Nevertheless, short-ranged correlations exist and the correla-
tion length can be large, which can support the irregular oscil-
lations observed in Fig. 4. Interestingly, one can still observe
dynamical similarities between oscillations in finite RR net-
works and ring lattices (though with strong fluctuations). We
interpret the temporal behavior in ring lattices as a flickering
dynamical behavior of the one found in RR networks.

Based on these results, we would like to stress how pro-
foundly network structure can influence network dynamics,
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particularly the differences between ER networks, ring lat-
tices, and all-to-all networks. Note that ER and all-to-all
networks are actually opposite ends in regard to clustering.
The clustering coefficient of an undirected ER network is c/N ,
which tends to zero in the infinite-size limit [28]. In contrast,
the coefficient is 1 in all-to-all networks. In undirected ring
lattices, the clustering coefficient is also large: it is equal
to 3(c − 1)/[2(2c − 1)] which tends to 3/4 at c 	 1. Note
that the clustering coefficient characterizes the occurrence of
triplets in a network [8]. Thus, while triplets may be neglected
in ER networks, they may not in all-to-all networks and ring
lattices. In our neuronal network there are many different
triads since the network is directed and there are two types
of nodes (excitatory and inhibitory neurons), which makes it
difficult to predict how these motifs may influence the dynam-
ics. Small-world properties and particularly large clustering
coefficients have been observed in both large-scale brain net-
works [29] and in neocortical microcircuitry [30]. At smaller
scales, neurons are connected on average to about 104 other

neurons in the cortex [31], while packed in minicolumns [32],
thus likely organized in dense clustered networks. Such high
clustering promotes the emergence of rich dynamical patterns,
as a recent study in networks of rat cortical neurons in vitro
has shown [33]. Here we suggest that such rich dynamical
behaviors may also be supported by local heterogeneities in
excitation and inhibition across the network. Additionally, our
results in ring lattices further support the importance of small-
world properties in the emergence of synchronization [16].
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