Understanding of short-term synaptic depression (STSD) and other forms of
synaptic plasticity is a topical problem in neuroscience. Here we study the
role of STSD in the formation of complex patterns of brain rhythms. We use a
cortical circuit model of neural networks composed of irregular spiking
excitatory and inhibitory neurons having type 1 and 2 excitability and
stochastic dynamics. In the model, neurons form a sparsely connected network
and their spontaneous activity is driven by random spikes representing synaptic
noise. Using simulations and analytical calculations, we found that if the STSD
is absent, the neural network shows either asynchronous behavior or regular
network oscillations depending on the noise level. In networks with STSD,
changing parameters of synaptic plasticity and the noise level, we observed
transitions to complex patters of collective activity: mixed-mode and spindle
oscillations, bursts of collective activity, and chaotic behaviour.
Interestingly, these patterns are stable in a certain range of the parameters
and separated by critical boundaries. Thus, the parameters of synaptic
plasticity can play a role of control parameters or switchers between different
network states. However, changes of the parameters caused by a disease may lead
to dramatic impairment of ongoing neural activity. We analyze the chaotic
neural activity by use of the 0-1 test for chaos (Gottwald, G. & Melbourne, I.,
2004) and show that it has a collective nature.Comment: 7 pages, Proceedings of 12th Granada Seminar, September 17-21, 201