21,849 research outputs found

    NoSOCS in SDSS. VI. The Environmental Dependence of AGN in Clusters and Field in the Local Universe

    Full text link
    We investigated the variation in the fraction of optical active galactic nuclei (AGN) hosts with stellar mass, as well as their local and global environments. Our sample is composed of cluster members and field galaxies at z0.1z \le 0.1 and we consider only strong AGN. We find a strong variation in the AGN fraction (FAGNF_{AGN}) with stellar mass. The field population comprises a higher AGN fraction compared to the global cluster population, especially for objects with log M>10.6M_* > 10.6. Hence, we restricted our analysis to more massive objects. We detected a smooth variation in the FAGNF_{AGN} with local stellar mass density for cluster objects, reaching a plateau in the field environment. As a function of clustercentric distance we verify that FAGNF_{AGN} is roughly constant for R >> R200_{200}, but show a steep decline inwards. We have also verified the dependence of the AGN population on cluster velocity dispersion, finding a constant behavior for low mass systems (σP650700\sigma_P \lesssim 650-700 km s1^{-1}). However, there is a strong decline in FAGNF_{AGN} for higher mass clusters (>> 700 km s1^{-1}). When comparing the FAGNF_{AGN} in clusters with or without substructure we only find different results for objects at large radii (R >> R200_{200}), in the sense that clusters with substructure present some excess in the AGN fraction. Finally, we have found that the phase-space distribution of AGN cluster members is significantly different than other populations. Due to the environmental dependence of FAGNF_{AGN} and their phase-space distribution we interpret AGN to be the result of galaxy interactions, favored in environments where the relative velocities are low, typical of the field, low mass groups or cluster outskirts.Comment: 11 pages, 10 figures, Accepted to MNRA

    Gravitational Wave Signatures of Highly Magnetized Neutron Stars

    Full text link
    Motivated by the recent gravitational wave detection by the LIGO-VIRGO observatories, we study the Love number and dimensionless tidal polarizability of highly magnetized stars. We also investigate the fundamental quasi-normal mode of neutron stars subject to high magnetic fields. To perform our calculations we use the chaotic field approximation and consider both nucleonic and hyperonic stars. As far as the fundamental mode is concerned, we conclude that the role played by the constitution of the stars is far more relevant than the intensity of the magnetic field and if massive stars are considered, the ones constituted by nucleons only present frequencies somewhat lower than the ones with hyperonic cores, a feature that can be used to point out the real internal structure of neutron stars. Moreover, our studies clearly indicate that strong magnetic fields play a crucial role in the deformability of low mass neutron stars, with possible consequences on the interpretation of the detected gravitational waves signatures.Comment: 24 pages, 4 figures, 6 table

    Non-Gaussian velocity distributions - The effect on virial mass estimates of galaxy groups

    Full text link
    We present a study of 9 galaxy groups with evidence for non-Gaussianity in their velocity distributions out to 4R200. This sample is taken from 57 groups selected from the 2PIGG catalog of galaxy groups. Statistical analysis indicates that non-Gaussian groups have masses significantly higher than Gaussian groups. We also have found that all non-Gaussian systems seem to be composed of multiple velocity modes. Besides, our results indicate that multimodal groups should be considered as a set of individual units with their own properties. In particular, we have found that the mass distribution of such units are similar to that of Gaussian groups. Our results reinforce the idea of non-Gaussian systems as complex structures in the phase space, likely corresponding to secondary infall aggregations at a stage before virialization. The understanding of these objects is relevant for cosmological studies using groups and clusters through the mass function evolution.Comment: 5 pages, 4 figures and 2 tables. Accepted for publication in the MNRA

    Non-parametric comparison of histogrammed two-dimensional data distributions using the Energy Test

    Get PDF
    When monitoring complex experiments, comparison is often made between regularly acquired histograms of data and reference histograms which represent the ideal state of the equipment. With the larger HEP experiments now ramping up, there is a need for automation of this task since the volume of comparisons could overwhelm human operators. However, the two-dimensional histogram comparison tools available in ROOT have been noted in the past to exhibit shortcomings. We discuss a newer comparison test for two-dimensional histograms, based on the Energy Test of Aslan and Zech, which provides more conclusive discrimination between histograms of data coming from different distributions than methods provided in a recent ROOT release.The Science and Technology Facilities Council, U

    How Does a Fundamental String Stretch its Horizon?

    Get PDF
    It has recently been shown that if we take into account a class of higher derivative corrections to the effective action of heterotic string theory, the entropy of the black hole solution representing elementary string states correctly reproduces the statistical entropy computed from the degeneracy of elementary string states. So far the form of the solution has been analyzed at distance scales large and small compared to the string scale. We analyze the solution that interpolates between these two limits and point out a subtlety in constructing such a solution due to the presence of higher derivative terms in the effective action. We also study the T-duality transformation rules to relate the moduli fields of the effective field theory to the physical compactification radius in the presence of higher derivative corrections and use these results to find the physical radius of compactification near the horizon of the black hole. The radius approaches a finite value even though the corresponding modulus field vanishes. Finally we discuss the non-leading contribution to the black hole entropy due to space-time quantum corrections to the effective action and the ambiguity involved in comparing this result to the statistical entropy.Comment: LaTeX file, 38 pages; v2: minor changes and added reference

    Polymer flooding in a high salinity heavy-oil reservoir

    Get PDF
    This work aims to present a methodology to evaluate polymer flooding and compare the results with the conventional waterflooding for a target heavy oil reservoir. The dead oil and produced water (SPW) (104 800 ppm of total solids dissolved) were prepared to represent the reservoir fluids at test conditions (60°C). SPW was the water source to make and determine the polymer concentration (HPAM-ATBS) to get the target viscosity for the injection fluid (10 mPa s at 7.8 s-1). Botucatu sandstone samples represented the reservoir formation. We verified the thickness of the polymer solution after flow throughout the rock sample and confirmed higher value than that for injected SPW. Polymer flooding led to the breakthrough delay, shifted the fractional flow to the right, anticipated oil production, and incremented oil recovery. Under the tested conditions, the maximum contribution of polymer flooding occurred up to 70% of water cut121355
    corecore