18,748 research outputs found

    Nambu monopoles interacting with lattice defects in two-dimensional artificial square spin ice

    Full text link
    The interactions between an excitation (similar to a pair of Nambu monopoles) and a lattice defect are studied in an artificial two-dimensional square spin ice. This is done by considering a square array of islands containing only one island different from all others. This difference is incorporated in the magnetic moment (spin) of the "imperfect" island and several cases are studied, including the special situation in which this distinct spin is zero (vacancy). We have shown that the two extreme points of a malformed island behave like two opposite magnetic charges. Then, the effective interaction between a pair of Nambu monopoles with the deformed island is a problem involving four magnetic charges (two pairs of opposite poles) and a string. We also sketch the configuration of the field lines of these four charges to confirm this picture. The influence of the string on this interaction decays rapidly with the string distance from the defect.Comment: 7 pages, 13 figure

    Non-parametric comparison of histogrammed two-dimensional data distributions using the Energy Test

    Get PDF
    When monitoring complex experiments, comparison is often made between regularly acquired histograms of data and reference histograms which represent the ideal state of the equipment. With the larger HEP experiments now ramping up, there is a need for automation of this task since the volume of comparisons could overwhelm human operators. However, the two-dimensional histogram comparison tools available in ROOT have been noted in the past to exhibit shortcomings. We discuss a newer comparison test for two-dimensional histograms, based on the Energy Test of Aslan and Zech, which provides more conclusive discrimination between histograms of data coming from different distributions than methods provided in a recent ROOT release.The Science and Technology Facilities Council, U

    Instanton Corrected Non-Supersymmetric Attractors

    Full text link
    We discuss non-supersymmetric attractors with an instanton correction in Type IIA string theory compactified on a Calabi-Yau three-fold at large volume. For a stable non-supersymmetric black hole, the attractor point must minimize the effective black hole potential. We study the supersymmetric as well as non-supersymmetric attractors for the D0-D4 system with instanton corrections. We show that in simple models, like the STU model, the flat directions of the mass matrix can be lifted by a suitable choice of the instanton parameters.Comment: Minor modifications, Corrected typos, 38 pages, 1 figur

    Black Hole Entropy Function and the Attractor Mechanism in Higher Derivative Gravity

    Get PDF
    We study extremal black hole solutions in D dimensions with near horizon geometry AdS_2\times S^{D-2} in higher derivative gravity coupled to other scalar, vector and anti-symmetric tensor fields. We define an entropy function by integrating the Lagrangian density over S^{D-2} for a general AdS_2\times S^{D-2} background, taking the Legendre transform of the resulting function with respect to the parameters labelling the electric fields, and multiplying the result by a factor of 2\pi. We show that the values of the scalar fields at the horizon as well as the sizes of AdS_2 and S^{D-2} are determined by extremizing this entropy function with respect to the corresponding parameters, and the entropy of the black hole is given by the value of the entropy function at this extremum. Our analysis relies on the analysis of the equations of motion and does not directly make use of supersymmetry or specific structure of the higher derivative terms.Comment: LaTeX file, 12page

    Efficient computation of hashes

    Get PDF
    The sequential computation of hashes at the core of many distributed storage systems and found, for example, in grid services can hinder efficiency in service quality and even pose security challenges that can only be addressed by the use of parallel hash tree modes. The main contributions of this paper are, first, the identification of several efficiency and security challenges posed by the use of sequential hash computation based on the Merkle-Damgard engine. In addition, alternatives for the parallel computation of hash trees are discussed, and a prototype for a new parallel implementation of the Keccak function, the SHA-3 winner, is introduced

    Plantio comprobatório de canjarana (Cabralea canjerana subsp. canjerana).

    Get PDF
    bitstream/item/101394/1/PA-1999-Carvalho-PlantioComprobatorio.pd
    corecore