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Abstract

We study extremal black hole solutions in D dimensions with near horizon geome-
try AdS2 × SD−2 in higher derivative gravity coupled to other scalar, vector and anti-
symmetric tensor fields. We define an entropy function by integrating the Lagrangian
density over SD−2 for a general AdS2 ×SD−2 background, taking the Legendre transform
of the resulting function with respect to the parameters labelling the electric fields, and
multiplying the result by a factor of 2π. We show that the values of the scalar fields at the
horizon as well as the sizes of AdS2 and SD−2 are determined by extremizing this entropy
function with respect to the corresponding parameters, and the entropy of the black hole
is given by the value of the entropy function at this extremum. Our analysis relies on the
analysis of the equations of motion and does not directly make use of supersymmetry or
specific structure of the higher derivative terms.
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1 Introduction and Summary

Analysis of supersymmetric black holes in string theory have led to many new insights into

the classical and quantum aspects of black holes. In particular a rich structure has emerged

in the context of half-BPS black holes in N = 2 supersymmetric string theories in four

dimensions. One of the important features of these black holes is the attractor mechanism

[1, 2, 3] by which the values of the scalar fields at the horizon are determined only by the

charges carried by the black hole and are independent of the asymptotic values of the scalar

fields. The entropy of these black holes agrees with the microscopic counting of the states

of the brane system they describe, not only in the supergravity approximation, but also

after the inclusion of higher derivative corrections to the generalized prepotential[4, 5, 6,

7, 8, 9, 10, 11, 12, 13, 14]. More recently it has been shown that the Legendre transform

of the black hole entropy with respect to the electric charges is directly related to the

generalized prepotential, and this has led to a new conjectured relation between the black

hole entropy and topological string partition function[15, 16, 17, 18]. Finally, applying the

results for these black holes to the special case of black holes in heterotic string theory

with purely electric charges, one finds agreement between black hole entropy and the

degeneracy of elementary string states[19, 20, 21, 22, 23, 24, 25, 26, 27] even though the

black hole entropy vanishes in the supergravity approximation[28, 29, 30].

All of these results have been derived by making heavy use of supersymmetry. In

particular while taking into account the effect of higher derivative terms one includes in

the string theory effective action only a special class of terms which can be computed

using the partition function of topological string theory[31, 32, 33]. These corrections are

controlled by a special function known as the generalized prepotential[8, 12, 13]. While

these constitute an important set of terms in the string theory effective acion, they are
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by no means the only terms, and at present there is no understanding of why these terms

should play a special role in the study of black holes. In fact there are counterexamples,

involving elementary string states in type II string theory, for which the corrections to

the generalized prepotential are not enough to produce the desired result for the black

hole entropy[24]. Thus it seems important to study the role of the complete set of higher

derivative terms on the near horizon geometry of the black hole.

In this paper we study the effect of higher derivative terms on the entropy of extremal

black holes in D dimensions following the general formalism developed in [34, 35, 36, 37].

We do not make use of supersymmetry directly, but define extremal black holes to be those

objects whose near horizon geometry is given by AdS2×SD−2.1 We also define the entropy

of the extremal black hole to be the extremal limit of the entropy of a non-extremal black

hole so that we can use the general formula for the entropy given in [34, 35, 36, 37] even

though strictly extremal black holes do not have a bifurcate horizon. Our main results

may be summarized as follows.

1. Let SBH(~q, ~p) denote the entropy of a D-dimensional extremal black hole, with near

horizon geometry AdS2 × SD−2, as a function of electric charges {qi} associated

with one form gauge fields and magnetic charges {pa} associated with (D− 3) form

gauge fields. We choose a coordinate system in which the AdS2 part of the metric

is proportional to −r2dt2 + dr2/r2. Then the Legendre transform of SBH(~q, ~p)/2π

with respect to the variables qi is equal to the the integral of the Lagrangian density

over the (D − 2) dimensional sphere SD−2 enclosing the black hole. The variable

conjugate to qi represents the radial electric field ei at the horizon associated with

the i-th gauge field.

2. Consider a general AdS2 ×SD−2 background parametrized by the sizes of AdS2 and

SD−2, the electric and magnetic fields and the values of various scalar fields. We

define an entropy function by integrating the Lagrangian density evaluated for this

background over SD−2, taking the Legendre transform of this integral with respect

to the parameters ei labelling the electric fields and multiplying the result by 2π.

The result is a function of the values us of the scalar fields, the sizes v1 and v2

of AdS2 and SD−2, the electric charges qi conjugate to the variables ei, and the

1Eventually supersymmetry may play a role in establishing the existence of a solution that interpolates
between the near horizon AdS2 × SD−2 geometry and the asymptotic Minkowski space-time.
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magnetic charges pa labelling the background magnetic fields. We show that for

given ~q and ~p, the values us of the scalar fields as well as the sizes v1 and v2 of AdS2

and SD−2 are determined by extremizing the entropy function with respect to the

variables ui, v1 and v2. Furthermore the entropy itself is given by the value of the

entropy function at the horizon.

3. For extremal black hole solutions without Ramond-Ramond (RR) charges in tree

level string theory the Lagrangian density at the horizon vanishes due to the dilaton

field equation. In this case the entropy of the black hole is given simply by 2π times

the product of the electric field at the horizon and the electric charge of the black

hole.

These results rely on the assumption that the Lagrangian density can be expressed in

terms of gauge invariant field strengths and does not involve the gauge fields explicitly.

Thus if Chern-Simons terms are present we either need to remove them by going to the

dual field variables, or if that is not possible, consider black hole solutions which are not

affected by these Chern-Simons terms.

2 Entropy of Extremal Black Holes

We begin by considering a four dimensional theory of gravity coupled to a set of abelian

gauge fields A(i)
µ and neutral scalar fields {φs}. Suppose

√− det gL is the lagrangian

density, expressed as a function of the metric gµν , the scalar fields {φs}, the gauge field

strengths F (i)
µν , and covariant derivatives of these fields. We consider a spherically sym-

metric extremal black hole solution with near horizon geometry AdS2 × S2. The most

general field configuration, consistent with the SO(2, 1)×SO(3) symmetry of AdS2 ×S2,

is of the form:

ds2 ≡ gµνdxµdxν = v1

(

−r2dt2 +
dr2

r2

)

+ v2

(

dθ2 + sin2 θdφ2
)

φs = us

F
(i)
rt = ei, F

(i)
θφ =

pi

4π
sin θ , (2.1)

4



where v1, v2, {us}, {ei} and {pi} are constants. For this background the nonvanishing

components of the Riemann tensor are:2

Rαβγδ = −v−1
1 (gαγgβδ − gαδgβγ) , α, β, γ, δ = r, t ,

Rmnpq = v−1
2 (gmpgnq − gmqgnp) , m, n, p, q = θ, φ . (2.2)

It follows from the general form of the background that the covariant derivatives of the

scalar fields φs, the gauge field strengths F (i)
µν and the Riemann tensor Rµνρσ all vanish

for the near horizon geometry. By the general symmetry consideration it follows that the

contribution to the equation of motion from any term in the action that involves covariant

derivatives of the gauge field strengths, scalars or the Riemann tensor vanish identically

for this background and we can restrict our attention to only those terms which do not

involve covariant derivatives of these fields.3

Let us denote by f(~u,~v, ~e, ~p) the Lagrangian density
√− det gL evaluated for the near

horizon geometry (2.1) and integrated over the angular coordinates[27]:

f(~u,~v, ~e, ~p) =
∫

dθ dφ
√

− det gL . (2.3)

The scalar and the metric field equations in the near horizon geometry correspond to

extremizing f with respect to the variables ~u and ~v:

∂f

∂us

= 0,
∂f

∂vi

= 0 . (2.4)

On the other hand the non-trivial components of the gauge field equations and the Bianchi

identities take the form:

∂r

(

∂
√− det gL

∂F
(i)
rt

)

= 0, ∂rF
(i)
θφ = 0 . (2.5)

Both sets of equations in (2.5) are automatically satisfied by the background (2.1), with

the constants of integration having the interpretation as electric and magnetic charges of

2In our convention Rµ
νρσ = ∂ρΓ

µ
νσ − ∂σΓµ

νρ + Γµ
τρΓ

τ
νσ − Γµ

τσΓτ
νρ where Γµ

νρ is the Christoffel symbol.
3We are assuming that all terms in the action depend explicitly only on the gauge field strengths

and not on gauge fields. This condition is violated for example in string theory by Chern-Simons type
coupling of the gauge fields to three form field strengths. However, as is well known, we can get rid of
such terms by dualizing the two form field to a scalar axion a. This field couples to the gauge fields only
through field strengths. If we encounter a theory where it is impossible to carry this out for all fields, our
analysis will still be valid if these additional terms do not affect the equation of motion and the entropy
for the specific black hole solution under study.
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the black hole. From this it follows that the constants pi appearing in (2.1) correspond

to magnetic charges of the black hole, and

∂f

∂ei

= qi (2.6)

where qi denote the electric charges carried by the black hole.

For fixed ~p and ~q, (2.4) and (2.6) give a set of equations which are equal in number

to the number of unknowns ~u, ~v and ~e. In a generic case we may be able to solve

these equations completely to determine the background in terms of only the electric and

the magnetic charges ~q and ~p. 4 This is consistent with the attractor mechanism for

supersymmetric background which says that the near horizon configuration of a black

hole depends only on the electric and magnetic charges carried by the black hole and

not on the asymptotic values of these scalar fields. We shall return to a more detailed

discussion of this mechanism in section 3.

Let us now turn to the analysis of the entropy associated with this black hole. A

general formula for the entropy in the presence of higher derivative terms has been given

in [34, 35, 36, 37]. The formula simplifies enormously here since the covariant derivatives

of all the tensors vanish, and we get a simple formula:

SBH = 8π
∂L

∂Rrtrt

grr gtt AH , (2.7)

where AH is the area of the event horizon and ∂L
∂Rµνρσ

is defined through the equation

δ L =
∂L

∂Rµνρσ

δ Rµνρσ . (2.8)

In computing δL we can ignore all terms in L which involve covariant derivatives of

the Riemann tensor, and treat the components of the Riemann tensor as independent

variables.

In order to simplify this formula let us denote by fλ(~u,~v, ~e, ~p) an expression similar

to the right hand side of (2.3) except that each factor of Rrtrt in the expression of L is

4We should note however that the situation in string theory is not completely generic. For example
in N = 2 supersymmetric string theories there is no coupling of the hypermultiplet scalars to the vector
multiplet fields or the curvature tensor to lowest order in α′, and hence in this approximation the function
f does not depend on the hypermultiplet scalars. Thus the equations (2.4), (2.6) do not fix the values of
the hypermultiplet scalars in this approximation.
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multiplied by a factor of λ. Then we have the relation:

∂fλ(~u,~v, ~e, ~p)

∂λ

∣

∣

∣

∣

∣

λ=1

=
∫

dθ dφ
√

− det g Rαβγδ

∂L
∂Rαβγδ

, (2.9)

where the repeated indices α, β, γ, δ are summed over the coordinates r and t. Now since

by symmetry consideration (∂L/∂Rαβγδ) is proportional to (gαγgβδ − gαδgβγ), we have

∂L
∂Rαβγδ

= −v2
1 (gαγgβδ − gαδgβγ)

∂L
∂Rrtrt

. (2.10)

The constant of proportionality has been fixed by taking (αβγδ) = (rtrt). Using (2.2)

and (2.10) we can rewrite (2.9) as

∂L
∂Rrtrt

AH =
1

4
v−2
1

∂fλ(~u,~v, ~e, ~p)

∂λ

∣

∣

∣

∣

∣

λ=1

. (2.11)

Substituting this into (2.7) gives[27]

SBH = −2π
∂fλ(~u,~v, ~e, ~p)

∂λ

∣

∣

∣

∣

∣

λ=1

. (2.12)

We shall now reexpress the right hand side of (2.12) in terms of derivatives of f with

respect to the variables ~u, ~v, ~e and ~p. Since the expression for L is invariant under

reparametrization of the r, t coordinates, every factor of Rrtrt in the expression for fλ

must appear in the combination λ grrgttRrtrt = −λv−1
1 , every factor of F

(i)
rt must appear

in the combination
√−grrgttF

(i)
rt = eiv

−1
1 , and every factor of F

(i)
θφ = ei and φs = us must

appear without any accompanying power of v1. The contribution from all terms which

involve covariant derivatives of F (i)
µν , Rµνρσ or φs vanish; hence there is no further factor of

v1 coming from contraction of the metric with these derivative operators. The only other

v1 dependence of fλ(~u,~v, ~e, ~p) is through the overall multiplicative factor of
√− det g ∝ v1.

Thus fλ(~u,~v, ~e, ~p) must be of the form v1g(~u, v2, ~p, λv−1
1 , ~ev−1

1 ) for some function g, and

we have

λ
∂fλ(~u,~v, ~e, ~p)

∂λ
+ v1

∂fλ(~u,~v, ~e, ~p)

∂v1

+ ei

∂fλ(~u,~v, ~e, ~p)

∂ei

− fλ(~u,~v, ~e, ~p) = 0 . (2.13)

Setting λ = 1 in (2.13), using the equation of motion of v1 as given in (2.4), and substi-

tuting the result into eq.(2.12) we get

SBH = 2π

(

ei

∂f

∂ei

− f

)

. (2.14)
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This together with (2.6) shows that SBH(~q, ~p)/2π may be regarded as the Legendre trans-

form of the function f(~u,~v, ~e, ~p) with respect to the variables ei after eliminating ~u and ~v

through their equations of motion (2.4).

The analysis can be easily generalized to higher dimensional theories as follows. In

D space-time dimensions we consider an extremal black hole solution with near horizon

geometry AdS2 × SD−2. The relevant fields which can take non-trivial expectation value

near the horizon are scalars {φs}, metric gµν , gauge fields A(i)
µ and (D − 3)-form gauge

fields B(a)
µ1...µD−3

. If H(a)
µ1...µD−2

denote the field strength associated with the B field, then the

general background consistent with the SO(2, 1)×SO(D−1) symmetry of the background

geometry is of the form:

ds2 ≡ gµνdxµdxν = v1

(

−r2dt2 +
dr2

r2

)

+ v2 dΩ2
D−2

φs = us

F
(i)
rt = ei, H

(a)
l1···lD−2

= pa ǫl1···lD−2

√
det h(D−2) /ΩD−2 . (2.15)

where dΩD−2 = h
(D−2)
ll′ dxldxl′ denotes the line element on the unit (D − 2)-sphere, ΩD−2

denotes the area of the unit (D − 2)-sphere, xli with 2 ≤ li ≤ (D − 1) are coordinates

along this sphere and ǫ denotes the totally anti-symmetric symbol with ǫ2...(D−1) = 1. We

now define

f(~u,~v, ~e, ~p) =
∫

dx2 · · · dxD−1
√

− det gL , (2.16)

as in (2.3). Analysis identical to that for D = 4 now tells us that the constants pa represent

magnetic type charges carried by the black hole, and the equations which determine the

values of ~u, ~v and ~e are

∂f

∂us

= 0,
∂f

∂vi

= 0 ,
∂f

∂ei

= qi , (2.17)

where qi denote the electric charges carried by the black hole. Also using (2.7) which is

valid in any dimension, we can show that the entropy of the black hole is given by 2π

times the Legendre transform of f :

SBH = 2π

(

ei

∂f

∂ei

− f

)

. (2.18)

as in (2.14).

At string tree level, and in the absence of Ramond-Ramond background fields (which

includes all black holes in heterotic string theory) the Lagrangian density at the horizon
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and hence the function f vanishes due to the dilaton field equation. Thus eqs.(2.17),

(2.18) give:

SBH = 2π qi ei . (2.19)

In other words the entropy of these black holes is given by 2π times the product of the

electric charge and the electric field at the horizon. It will be interesting to see if this

quantity admits a simple interpretation in the world-sheet conformal field theory that

describes this background.

3 Attractor Mechanism and the Entropy Function

We can now reformulate the attractor mechanism in a more suggestive manner. Let us

define

F (~u,~v, ~q, ~p) = 2π

(

ei

∂f(~u,~v, ~e, ~p)

∂ei

− f(~u,~v, ~e, ~p)

)

, (3.1)

with ei determined by the equation:

∂f(~u,~v, ~e, ~p)

∂ei

= qi . (3.2)

In that case it follows from (2.17) that the values of ~u and ~v at the horizon are determined

by extremizing the function F (~u,~v, ~q, ~p) with respect to ~u and ~v:

∂F (~u,~v, ~q, ~p)

∂us

= 0 ,
∂F (~u,~v, ~q, ~p)

∂vi

= 0 . (3.3)

Furthermore, eq.(2.18) shows that the black hole entropy SBH is given by the value of the

function F at this extremum:

SBH(~q, ~p) = F (~u,~v, ~q, ~p) , (3.4)

with ~u, ~v given by eq.(3.3). This suggests that we call F (~u,~v, ~q, ~p) the entropy function.

Finally, the near horizon electric field ei are given by

ei =
1

2π

∂F

∂qi

. (3.5)
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4 Relation to Earlier Results

We are now in a position to discuss the relation between our results and the observation of

[15] that the Legendre transform of the entropy of a black hole in N = 2 supersymmetric

string theory is given by the imaginary part of the generalized prepotential of the theory.

In the argument of the prepotential the real parts of the complex vector multiplet scalar

fields are replaced, up to a constant of proportionality, by the magnetic charges of the

black hole, whereas the imaginary parts of these scalar fields are replaced by the variables

conjugate to the electric charges of the black hole. This result follows from our results

together with the following observations (see e.g. [12]):

1. For the near horizon configuration of the black hole in N = 2 supersymmetric

string theory, all terms in the Lagrangian density vanish, except for a single term

proportional to the imaginary part of the generalized prepotential .

2. For the near horizon geometry the real parts of the vector multiplet scalar fields

are proportional to the magnetic field at the horizon whereas the imaginary parts

of these scalar fields are proportional to the electric field at the horizon.

A little algebra shows that all the normalization factors also work out correctly and we

can reproduce the abovementioned observation of [15] from our results.
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