26,029 research outputs found
GeMs/GSAOI observations of La Serena 94: an old and far open cluster inside the solar circle
Physical properties were derived for the candidate open cluster La Serena 94,
recently unveiled by the VVV collaboration. Thanks to the exquisite angular
resolution provided by GeMS/GSAOI, we could characterize this system in detail,
for the first time, with deep photometry in JHK - bands. Decontaminated
JHK diagrams reach about 5 mag below the cluster turnoff in H. The locus
of red clump giants in the colour - colour diagram, together with an extinction
law, was used to obtain an average extinction of . The
same stars were considered as standard - candles to derive the cluster
distance, kpc. Isochrones were matched to the cluster colour -
magnitude diagrams to determine its age, , and
metallicity, . A core radius of pc was
found by fitting King models to the radial density profile. By adding up the
visible stellar mass to an extrapolated mass function, the cluster mass was
estimated as M, consistent with an
integrated magnitude of and a tidal radius of
pc. The overall characteristics of La Serena 94 confirm that
it is an old open cluster located in the Crux spiral arm towards the fourth
Galactic quadrant and distant kpc from the Galactic centre. The
cluster distorted structure, mass segregation and age indicate that it is a
dynamically evolved stellar system.Comment: 16 pages, 24 figures, 2 Tables, accepted by MNRAS; corrected typo
Recommended from our members
Mitochondrial metabolism and DNA methylation: a review of the interaction between two genomes.
Mitochondria are controlled by the coordination of two genomes: the mitochondrial and the nuclear DNA. As such, variations in nuclear gene expression as a consequence of mutations and epigenetic modifications can affect mitochondrial functionality. Conversely, the opposite could also be true. However, the relationship between mitochondrial dysfunction and epigenetics, such as nuclear DNA methylation, remains largely unexplored. Mitochondria function as central metabolic hubs controlling some of the main substrates involved in nuclear DNA methylation, via the one carbon metabolism, the tricarboxylic acid cycle and the methionine pathway. Here, we review key findings and highlight new areas of focus, with the ultimate goal of getting one step closer to understanding the genomic effects of mitochondrial dysfunction on nuclear epigenetic landscapes
A dynamical point of view of Quantum Information: entropy and pressure
Quantum Information is a new area of research which has been growing rapidly
since last decade. This topic is very close to potential applications to the so
called Quantum Computer. In our point of view it makes sense to develop a more
"dynamical point of view" of this theory. We want to consider the concepts of
entropy and pressure for "stationary systems" acting on density matrices which
generalize the usual ones in Ergodic Theory (in the sense of the Thermodynamic
Formalism of R. Bowen, Y. Sinai and D. Ruelle). We consider the operator
acting on density matrices over a finite
-dimensional complex Hilbert space where and , are
operators in this Hilbert space. is not a linear operator. In
some sense this operator is a version of an Iterated Function System (IFS).
Namely, the , , play the role of the
inverse branches (acting on the configuration space of density matrices )
and the play the role of the weights one can consider on the IFS. We
suppose that for all we have that . A
family determines a Quantum Iterated Function System
(QIFS) , $\mathcal{F}_W=\{\mathcal{M}_N,F_i,W_i\}_{i=1,...,
k}.
A dynamical point of view of Quantum Information: Wigner measures
We analyze a known version of the discrete Wigner function and some
connections with Quantum Iterated Funcion Systems. This paper is a follow up of
"A dynamical point of view of Quantum Information: entropy and pressure" by the
same authors
A Thermodynamic Formalism for density matrices in Quantum Information
We consider new concepts of entropy and pressure for stationary systems
acting on density matrices which generalize the usual ones in Ergodic Theory.
Part of our work is to justify why the definitions and results we describe here
are natural generalizations of the classical concepts of Thermodynamic
Formalism (in the sense of R. Bowen, Y. Sinai and D. Ruelle). It is well-known
that the concept of density operator should replace the concept of measure for
the cases in which we consider a quantum formalism. We consider the operator
acting on the space of density matrices over a finite
-dimensional complex Hilbert space where and ,
are linear operators in this Hilbert space. In some sense this
operator is a version of an Iterated Function System (IFS). Namely, the
, , play the role of the inverse branches
(i.e., the dynamics on the configuration space of density matrices) and the
play the role of the weights one can consider on the IFS. In this way a
family determines a Quantum Iterated Function System
(QIFS). We also present some estimates related to the Holevo bound
National industry cluster templates and the structure of industry output dynamics: a stochastic geometry approach
Cluster analysis has been widely used in an Input-Output framework, with the main objective of uncover the structure of production, in order to better identify which sectors are strongly connected with each other and choose the key sectors of a national or regional economy. There are many empirical studies determining potential clusters from interindustry flows directly, or from their corresponding technical (demand) or market (supply) coefficients, most of them applying multivariate statistical techniques. In this paper, after identifying clusters this way, and since it may be expected that strongly (interindustry) connected sectors share a similar growth and development path, the structure of sectoral dynamics is uncovered, by means of a stochastic geometry technique based on the correlations of industry outputs in a given period of time. An application is made, using Portuguese input-output data, and the results do not clearly support this expectation.Clusters, Input-output analysis, Industry output dynamics
Sanitizing the fortress: protection of ant brood and nest material by worker antibiotics
Social groups are at particular risk for parasite infection, which is heightened in eusocial insects by the low genetic diversity of individuals within a colony. To combat this, adult ants have evolved a suite of defenses to protect each other, including the production of antimicrobial secretions. However, it is the brood in a colony that are most vulnerable to parasites because their individual defenses are limited, and the nest material in which ants live is also likely to be prone to colonization by potential parasites. Here, we investigate in two ant species whether adult workers use their antimicrobial secretions not only to protect each other but also to sanitize the vulnerable brood and nest material. We find that, in both leaf-cutting ants and weaver ants, the survival of the brood was reduced and the sporulation of parasitic fungi from them increased, when the workers nursing them lacked functional antimicrobial-producing glands. This was the case for both larvae that were experimentally treated with a fungal parasite (Metarhizium) and control larvae which developed infections of an opportunistic fungal parasite (Aspergillus). Similarly, fungi were more likely to grow on the nest material of both ant species if the glands of attending workers were blocked. The results show that the defense of brood and sanitization of nest material are important functions of the antimicrobial secretions of adult ants and that ubiquitous, opportunistic fungi may be a more important driver of the evolution of these defenses than rarer, specialist parasites
- …