1,203 research outputs found

    Design of multistandard adaptive voltage-controlled oscillators

    Full text link

    Adaptive multi-standard circuits and systems for wireless communications

    Full text link

    Adaptivity of voltage-controlled oscillators - theory and design

    Full text link

    Static quantities of the W boson in the SU_L(3) X U_X(1) model with right-handed neutrinos

    Full text link
    The static electromagnetic properties of the WW boson, Δκ\Delta \kappa and ΔQ\Delta Q, are calculated in the SU_L(3)} \times U_X(1) model with right-handed neutrinos. The new contributions from this model arise from the gauge and scalar sectors. In the gauge sector there is a new contribution from a complex neutral gauge boson Y0Y^0 and a singly-charged gauge boson Y±Y^\pm. The mass of these gauge bosons, called bileptons, is expected to be in the range of a few hundreds of GeV according to the current bounds from experimental data. If the bilepton masses are of the order of 200 GeV, the size of their contribution is similar to that obtained in other weakly coupled theories. However the contributions to both ΔQ\Delta Q and Δκ\Delta \kappa are negligible for very heavy or degenerate bileptons. As for the scalar sector, an scenario is examined in which the contribution to the WW form factors is identical to that of a two-Higgs-doublet model. It is found that this sector would not give large corrections to Δκ\Delta \kappa and ΔQ\Delta Q.Comment: New material included. Final version to apppear in Physical Review

    Scalar Potential Without Cubic Term in 3-3-1 Models Without Exotic Electric Charges

    Get PDF
    A detailed study of the criteria for stability of the scalar potential, and the proper electroweak symmetry breaking pattern in some 3-3-1 models without exotic electric charges is presented. In this paper we concentrate in a scalar sector with three Higgs scalar triplets, with a potential that does not include the cubic term, due to the presence of a discrete symmetry. For the analysis we use, and improve, a method previously developed to study the scalar potential in the two-Higgs-doublet extension of the standard model. Our main result is to show the consistency of those 3-3-1 models without exotic electric charges.Comment: 19 page

    The 3-3-1 model with S_4 flavor symmetry

    Full text link
    We construct a 3-3-1 model based on family symmetry S_4 responsible for the neutrino and quark masses. The tribimaximal neutrino mixing and the diagonal quark mixing have been obtained. The new lepton charge \mathcal{L} related to the ordinary lepton charge L and a SU(3) charge by L=2/\sqrt{3} T_8+\mathcal{L} and the lepton parity P_l=(-)^L known as a residual symmetry of L have been introduced which provide insights in this kind of model. The expected vacuum alignments resulting in potential minimization can origin from appropriate violation terms of S_4 and \mathcal{L}. The smallness of seesaw contributions can be explained from the existence of such terms too. If P_l is not broken by the vacuum values of the scalar fields, there is no mixing between the exotic and the ordinary quarks at the tree level.Comment: 20 pages, revised versio

    SU(3)_c X SU(4)_L X U(1)_x without exotic electric charges

    Full text link
    We present an extension of the Standard Model to the local gauge group SU(3)cSU(4)LU(1)XSU(3)_c\otimes SU(4)_L\otimes U(1)_X with a family non-universal treatment and anomalies canceled among the three families in a nontrivial fashion. The mass scales, the gauge boson masses, and the masses for the spin 1/2 particles in the model are analyzed. The neutral currents coupled to all neutral vector bosons in the model are studied, and particular values of the parameters are used in order to simplify the mixing between the three neutral currents present in the theory, mixing which is further constrained by experimental results from the CERN LEP, SLAC Linear Collider, and atomic parity violation.Comment: RevTeX, 11 pages, 1 figure. Several formulas corrected. One reference added. Accepted for publication in Phys. Rev.

    Chromomagnetic Dipole Moment of the Top Quark Revisited

    Full text link
    We study the complete one-loop contributions to the chromagnetic dipole moment Δκ\Delta\kappa of the top quark in the Standard Model, two Higgs doublet models, topcolor assited technicolor models (TC2), 331 models and extended models with a single extra dimension. We find that the SM predicts Δκ=0.056\Delta\kappa = - 0.056 and that the predictions of the other models are also consitent with the constraints imposed on Δκ\Delta\kappa by low-energy precision measurements.Comment: 20 pages, 5 figures, Updat

    Phenomenological aspects of the exotic TT quark in 331 models

    Full text link
    In the context of 331 models we analyze the phenomenology of exotic TT quarks with electric charge 2/3. We establish bounds for the corresponding masses and mixing angles and study the decay modes TbWT\to bW, tZtZ and qHqH. It is found that the decays into scalars are strongly dependent on the model parameters, and can be the dominant ones in a scenario with approximate flavor symmetry.Comment: 11 pages, 2 figure

    Demonstration of the temporal matter-wave Talbot effect for trapped matter waves

    Get PDF
    We demonstrate the temporal Talbot effect for trapped matter waves using ultracold atoms in an optical lattice. We investigate the phase evolution of an array of essentially non-interacting matter waves and observe matter-wave collapse and revival in the form of a Talbot interference pattern. By using long expansion times, we image momentum space with sub-recoil resolution, allowing us to observe fractional Talbot fringes up to 10th order.Comment: 17 pages, 7 figure
    corecore