159 research outputs found
Direct evidence of a blocking heavy atom effect on the water-assisted fluorescence enhancement detection of HgĀ²āŗ based on a ratiometric chemosensor
At the current stage of chemosensor chemistry, the critical question now is whether the heavy atom effect caused by HTM ions can be blocked or avoided. In the present work, we provide unequivocal evidence to confirm that the heavy atom effect of HgĀ²āŗ is inhibited by water and other solvent molecules based on results using the chemosensor L. Most importantly, the heavy atom effect and blocking thereof were monitored within the same system by the use of ratiometric fluorescence signal changes of the pyrene motif. These observations not only serve as the foundation for the design of new āturn-onā chemosensors for HTM ions, but also open up new opportunities for the monitoring of organic reactions
Synthesis of a ditopic homooxacalix[3]arene for fluorescence enhanced detection of heavy and transition metal ions
A pyrene-appended ratiometric fluorescent chemosensor L based on a synthetic approach of insulating the fluorophore from the ionophore by a specific molecular spacer has been synthesised and characterised. The fluorescence spectra changes of L suggested that the chemosensor can detect heavy and transition metal (HTM) ions ratiometrically and with variable sensitivity according to the substituents present. Ā¹H NMR titration experiments indicated that the three triazole ligands prefer binding with HgĀ²āŗ, PbĀ²āŗ and ZnĀ²āŗ, resulting in a conformational change that produces monomer emission of the pyrene accompanied by the excimer quenching. However, the addition of FeĀ³āŗ, which may be accommodated by the cavity of L, makes the pyrene units move closer to each other, and a discernible increase in the emission intensity of the static excimer is observed. Therefore, it is believed that the ditopic scaffold of the calix[3]arene as a specific molecular spacer here plays an important role in the blocking of the heavy atom effect of HTM ions by insulating the fluorophore from the ionophore given the long distance between the metal cation and the pyrene moiety
Recommended from our members
Reinforcement learning control for coordinated manipulation of multi-robots
In this paper, coordination control is investigated for multi-robots to manipulate an object with a common desired trajectory. Both trajectory tracking and control input minimization are considered for each individual robot manipulator, such that possible disagreement between different manipulators can be handled. Reinforcement learning is employed to cope with the problem of unknown dynamics of both robots and the manipulated object. It is rigorously proven that the proposed method guarantees the coordination control of the multi-robots system under study. The validity of the proposed method is verified through simulation studies
Assessment of English Teaching From Social - Anthropological Perspective: A Case Study of Microteaching in Warwick SJTU ETD Programme
Microteaching has gained considerable attention for its effectiveness in training teachers. Based on social-anthropological theory, a microteaching workshop in Warwick SJTU ETD Programme for 22 English teachers was investigated. Observation and interview, as the main basic methods, were applied to collect data. The results showed that microteaching offered participants an opportunity to practice teaching and receive useful feedback from peers and professional supervisors. Moreover, it was indicated that the improvement of teaching largely depends on self-reflection. The participants who were aware of teaching objectives and teaching aids, and opened to alternative teaching materials could easily manage the classroom teaching, and activate studentsā learning
Recommended from our members
Neural networks enhanced adaptive admittance control of optimized robot-environment interaction
In this paper, an admittance adaptation method has been developed for robots to interact with unknown environments. The environment to be interacted with is modeled as a linear system. In the presence of the unknown dynamics of environments, an observer in robot joint space is employed to estimate the interaction torque, and admittance control is adopted to regulate the robot behavior at interaction points. An adaptive neural controller using the radial basis function is employed to guarantee trajectory tracking. A cost function that defines the interaction performance of torque regulation and trajectory tracking is minimized by admittance adaptation. To verify the proposed method, simulation studies on a robot manipulator are conducted
LLCaps: Learning to Illuminate Low-Light Capsule Endoscopy with Curved Wavelet Attention and Reverse Diffusion
Wireless capsule endoscopy (WCE) is a painless and non-invasive diagnostic
tool for gastrointestinal (GI) diseases. However, due to GI anatomical
constraints and hardware manufacturing limitations, WCE vision signals may
suffer from insufficient illumination, leading to a complicated screening and
examination procedure. Deep learning-based low-light image enhancement (LLIE)
in the medical field gradually attracts researchers. Given the exuberant
development of the denoising diffusion probabilistic model (DDPM) in computer
vision, we introduce a WCE LLIE framework based on the multi-scale
convolutional neural network (CNN) and reverse diffusion process. The
multi-scale design allows models to preserve high-resolution representation and
context information from low-resolution, while the curved wavelet attention
(CWA) block is proposed for high-frequency and local feature learning.
Furthermore, we combine the reverse diffusion procedure to further optimize the
shallow output and generate the most realistic image. The proposed method is
compared with ten state-of-the-art (SOTA) LLIE methods and significantly
outperforms quantitatively and qualitatively. The superior performance on GI
disease segmentation further demonstrates the clinical potential of our
proposed model. Our code is publicly accessible.Comment: To appear in MICCAI 2023. Code availability:
https://github.com/longbai1006/LLCap
Comprehensive characterization of a time-course transcriptional response induced by autotoxins in Panax ginseng using RNA-Seq
The lists for all the differentially expressed genes. (XLS 1362ĆĀ kb
The First Polarimetric View on Quasi-Periodic Oscillations in a Black Hole X-ray Binary
We present the first polarimetric analysis of Quasi-Periodic Oscillations
(QPO) in a black hole binary utilizing \textit{IXPE} data. Our study focuses on
Swift J1727.8--1613, which experienced a massive outburst that was observed by
various telescopes across different wavelengths. The \textit{IXPE} observation
we studied was conducted during the Hard-Intermediate state. The polarization
degree (PD) and polarization angle (PA) were measured at 4.280.20\% and
, respectively. Remarkably, significant QPO signals
were detected during this observation, with a QPO frequency of approximately
1.34 Hz and a fractional root-mean-square (RMS) amplitude of about 12.3\%.
Furthermore, we conducted a phase-resolved analysis of the QPO using the
Hilbert-Huang transform technique. The photon index showed a strong modulation
with respect to the QPO phase. In contrast, the PD and PA exhibit no
modulations in relation to the QPO phase, which is inconsistent with the
expectation of the Lense-Thirring precession of the inner flow. Further
theoretical studies are needed to conform with the observational results.Comment: Accepted for publication in APJ
High energy Millihertz quasi-periodic oscillations in 1A 0535+262 with Insight-HXMT challenge current models
We studied the millihertz quasi-periodic oscillation (mHz QPO) in the 2020
outburst of the Be/X-ray binary 1A 0535+262 using Insight-HXMT data over a
broad energy band. The mHz QPO is detected in the 27-120 keV energy band. The
QPO centroid frequency is correlated with the source flux, and evolves in the
35-95 mHz range during the outburst. The QPO is most significant in the 50-65
keV band, with a significance of ~ 8 sigma, but is hardly detectable (<2 sigma)
in the lowest (1-27 keV) and highest (>120 keV) energy bands. Notably, the
detection of mHz QPO above 80 keV is the highest energy at which mHz QPOs have
been detected so far. The fractional rms of the mHz QPO first increases and
then decreases with energy, reaching the maximum amplitude at 50-65 keV. In
addition, at the peak of the outburst, the mHz QPO shows a double-peak
structure, with the difference between the two peaks being constant at ~0.02
Hz, twice the spin frequency of the neutron star in this system. We discuss
different scenarios explaining the generation of the mHz QPO, including the
beat frequency model, the Keplerian frequency model, the model of two jets in
opposite directions, and the precession of the neutron star, but find that none
of them can explain the origin of the QPO well. We conclude that the
variability of non-thermal radiation may account for the mHz QPO, but further
theoretical studies are needed to reveal the physical mechanism.Comment: 13 pages, 7 figures. Accepted for publication in MNRA
- ā¦