60 research outputs found

    Do NO, N2O, N2 and N2 fluxes differ in soils sourced from cropland and varying riparian buffer vegetation? An incubation study

    Get PDF
    Riparian buffers are expedient interventions for water quality functions in agricultural landscapes. However, the choice of vegetation and management affects soil microbial communities, which in turn affect nutrient cycling and the production and emission of gases such as nitric oxide (NO), nitrous oxide (N2O), nitrogen gas (N2) and carbon dioxide (CO2). To investigate the potential fluxes of the above-mentioned gases, soil samples were collected from a cropland and downslope grass, willow and woodland riparian buffers from a replicated plot scale experimental facility. The soils were re-packed into cores and to investigate their potential to produce the aforementioned gases via potential denitrification, a potassium nitrate (KNO3−) and glucose (labile carbon)-containing amendment, was added prior to incubation in a specialized laboratory DENItrification System (DENIS). The resulting NO, N2O, N2 and CO2 emissions were measured simultaneously, with the most NO (2.9 ± 0.31 mg NO m−2) and N2O (1413.4 ± 448.3 mg N2O m−2) generated by the grass riparian buffer and the most N2 (698.1 ± 270.3 mg N2 m−2) and CO2 (27,558.3 ± 128.9 mg CO2 m−2) produced by the willow riparian buffer. Thus, the results show that grass riparian buffer soils have a greater NO3− removal capacity, evidenced by their large potential denitrification rates, while the willow riparian buffers may be an effective riparian buffer as its soils potentially promote complete denitrification to N2, especially in areas with similar conditions to the current study

    CO2 fluxes from three different temperate grazed pastures using Eddy covariance measurements

    Get PDF
    Grasslands cover around 25% of the global ice-free land surface, they are used predominantly for forage and livestock production and are considered to contribute significantly to soil carbon (C) sequestration. Recent investigations into using ‘nature-based solutions’ to limit warming to <2 °C suggest up to 25% of GHG mitigation might be achieved through changes to grassland management. In this study we evaluate pasture management interventions at the Rothamsted Research North Wyke Farm Platform, under commercial farming conditions, over two years and consider their impacts on net CO2 exchange. We investigate if our permanent pasture system (PP) is, in the short-term, a net sink for CO2 and whether reseeding this with deep-rooting, high-sugar grass (HS) or a mix of high-sugar grass and clover (HSC) might increase the net removal of atmospheric CO2. In general CO2 fluxes were less variable in 2018 than in 2017 while overall we found that net CO2 fluxes for the PP treatment changed from a sink in 2017 (−5.40 t CO2 ha−1 y−1) to a source in 2018 (6.17 t CO2 ha−1 y−1), resulting in an overall small source of 0.76 t CO2 ha−1 over the two years for this treatment. HS showed a similar trend, changing from a net sink in 2017 (−4.82 t CO2 ha−1 y−1) to a net source in 2018 (3.91 t CO2 ha−1 y−1) whilst the HSC field was a net source in both years (3.92 and 4.10 t CO2 ha−1 y−1, respectively). These results suggested that pasture type has an influence in the atmospheric CO2 balance and our regression modelling supported this conclusion, with pasture type and time of the year (and their interaction) being significant factors in predicting fluxes

    Incidence of epidural haematoma and neurological injury in cardiovascular patients with epidural analgesia/anaesthesia: systematic review and meta-analysis

    Get PDF
    BACKGROUND: Epidural anaesthesia is used extensively for cardiothoracic and vascular surgery in some centres, but not in others, with argument over the safety of the technique in patients who are usually extensively anticoagulated before, during, and after surgery. The principle concern is bleeding in the epidural space, leading to transient or persistent neurological problems. METHODS: We performed an extensive systematic review to find published cohorts of use of epidural catheters during vascular, cardiac, and thoracic surgery, using electronic searching, hand searching, and reference lists of retrieved articles. RESULTS: Twelve studies included 14,105 patients, of whom 5,026 (36%) had vascular surgery, 4,971 (35%) cardiac surgery, and 4,108 (29%) thoracic surgery. There were no cases of epidural haematoma, giving maximum risks following epidural anaesthesia in cardiac, thoracic, and vascular surgery of 1 in 1,700, 1 in 1,400 and 1 in 1,700 respectively. In all these surgery types combined the maximum expected rate would be 1 in 4,700. In all these patients combined there were eight cases of transient neurological injury, a rate of 1 in 1,700 (95% confidence interval 1 in 3,300 to 1 in 850). There were no cases of persistent neurological injury (maximum expected rate 1 in 4,600). CONCLUSION: These estimates for cardiothoracic epidural anaesthesia should be the worst case. Limitations are inadequate denominators for different types of surgery in anticoagulated cardiothoracic or vascular patients more at risk of bleeding

    Methods of estimation of mitral valve regurgitation for the cardiac surgeon

    Get PDF
    Mitral valve regurgitation is a relatively common and important heart valve lesion in clinical practice and adequate assessment is fundamental to decision on management, repair or replacement. Disease localised to the posterior mitral valve leaflet or focal involvement of the anterior mitral valve leaflet is most amenable to mitral valve repair, whereas patients with extensive involvement of the anterior leaflet or incomplete closure of the valve are more suitable for valve replacement. Echocardiography is the recognized investigation of choice for heart valve disease evaluation and assessment. However, the technique is depended on operator experience and on patient's hemodynamic profile, and may not always give optimal diagnostic views of mitral valve dysfunction. Cardiac catheterization is related to common complications of an interventional procedure and needs a hemodynamic laboratory. Cardiac magnetic resonance (MRI) seems to be a useful tool which gives details about mitral valve anatomy, precise point of valve damage, as well as the quantity of regurgitation. Finally, despite of its higher cost, cardiac MRI using cine images with optimized spatial and temporal resolution can also resolve mitral valve leaflet structural motion, and can reliably estimate the grade of regurgitation

    Entwicklung und Herstellung von Profilteilen aus Maismehl als Substitution von expandiertem Polystyrol Abschlussbericht

    No full text
    SIGLEAvailable from TIB Hannover: F02B882 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDeutsche Bundesstiftung Umwelt, Osnabrueck (Germany)DEGerman
    corecore